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FOREWARD

The Fourteenth Image Understanding (IU) Workshop sponsored by the Defense Advanced Research
Projects Agency, Information Processing Technioues Office was held in Arlington, Virginia, on June 23rd
1983. The workshop was conducted as a full day session of the Computer Vision and Pattern Recognition
Conference presented by the Computer Society of the IEEE.

’

Commander Ronald B. Ohlander, USN, the Intelligent Systems Program Manager for the DARPA/IPTO,
welcomed the large audience consisting of research personnel involved in the Image Understanding Program,
Covernment personnel from various departments and agencies, and attendees from the CVPR conference
interested in the research efforts ongoing in this DARPA sponsored program. He noted that the existence
of so large and varied a conference as the CVPR, which has covered two days of tutorials and three days
of general sessions as well as this workshop, indicates the high level of interest and wide variety of
mature research now ongoing in the Image Processing field. This is the second time that DARPA has
coordinated its IU workshop with a professional society active in the field, remarked CDR Ohlander, the
first being a joint meeting in April 1981 with the Society of Photo Optical Instrumentation Engineers
(SPIE). CDR Ohlander indicated that the growing body of highly sophisticated researchers, particularly
in the Universities but also in the general industrial community, was a paramount factor in the growing
usefulness of IU science in both military and non military fields of endeavor. This combined meeting,

he concluded, is an excellent opportunity for users and theoreticians to interact to the mutual benefit
of both groups.

The morning and first part of the afternoon session of the workshop comprised thirteen technical
reports. These reports were selected by the principal investigators as representing an interesting facet
of their research programs. Due to the press of time, each organization involved in the program was
limited to only one presentation. However, in order to provide as complete a record as possible for use of
government sponsors, all reports produced by the various researchers in the DARPA Program are included in
this proceedings. A few reports were presented at other sessions of the CVPR Conference and are there-
fore published in the CVPR proceedings as well as in this volume.

The remainder of the workshop consisted of a panel discussion on the topic of, '"Most important
problems to be addressed in IU over the next few years", This subject was included in order to elicit

comnents from the wide experience available in the audience as well as the expertise of the panel discus-
sants.

This proceedings has been supplied to the Defense Technical Information Center (DTIC) and copies
may be secured from that Agency by writing to the following address:

Defense Technical Information Center
Cameron Station, Bldg. #5
Alexandria, Virginia 22314

A small charge is assessed by the DTIC for reproduction expenses. Accession number for this
proceedings is not yet available but will be assigned by the DTIC within the next thirty days. Accession
number for previous issues are listed on the following page.

The materials for the cover of this proceedings were supplied by Dr. Martin Herman of Carnegie-
Mellon Uiiversity. Dr. Herman described the meaning of the process with this description:

The layout shows the flow of events in the 3D Mosaic scene understanding system.
The stereo aerial photographs show part of Washington, D. C. The 3D wire-frame
description of the scene was produced by a process that extracted and matched
junctions from the images. A geometric modelling process then converted the wire
frames into a surface-based description of the scene. The reconstructed buildings
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are shown in the two bottom pictures. In the picture on the lower right, gray scale
obtained from one of the top images is mapped onto the faces of the buildings. The
stereo reconstruction process represents one step in the 3D Mosaic system, which
obtains a more complete description of the scene by incrementally accumulating infor-
mation derived from multiple viewpoints. The researchers on this project include

Dr. Martin Herman, Dr. Takeo Kanade, Mr. Shigeru Kuroe, and Mr. Duane Williams.

A more complete description may be fcund in Dr. Herman's paper, "Monocular Reconstruction of a
Complex Urban Scene in the 3D MOSAIC System", reproducted in section III of this proceedings.

Mr. Tom Dickerson of Science Applications, Inc. was responsible for the artwork and lay-out for
the proceedings cover. Appreciation is also due Ms. Neville Worthington of Science Applications, Inc.
for her assistance with arrangements, and particularly for typing support and in putting together this
proceedings. Finally, our thanks to the Computer Society, IEEE, for their cooperation and assistance
during the planning and execution for the conference and workshop. Particularly helpful were Mr. Harry
Hayman and Ms. Jerry Katz of IEEE and Dr. Takeo Kanade of Carnegie-Mellon University, the conference
chairman.

Lee S. Baumann

Science Applications, Inc.
Workshop Organizer
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Image Understanding Research at CMU
Takeo Kunude )
‘!
Compuater Scienee Department 7
£
Carnegic-NcHon University y
Pittshargh, PA 15213
The goals of hnoge Understanding Rescarch i CAMU have been to inconsistencies  exist, dependencies have been recorded  for cach
develop basic theory for widerstunding  3-dimensionol shapes and to ypothesis at the time of its creation. A hypothesis is dependent on all
desmonstraie an integrated system for photo interpretation (dutabase and clemerts whose existence dircetly resulted in the creation of the {

interactiveZawtomane nnage interpretation iechniques).  For these goals
we have been working in three subareas: 1) Incremental 30 Mosaic
System; ) Theory for Shape Understanding: and 3) MAPS.  This report

reviews our progress since the September 1982 workshop proceedings.

1. Incremental 3D Mosaic System

The Incremental 31) Mosaic system acquires a 31) surface-based
deseription tor model) of a complex urban scene by incrementally
accumulating information derived from multiple viewpoints. Since our
report in the September 1982 proceedings [Herman, Kanade, and Kuroe
82]. we have made sigrificant progress in two conponents of the system:
the component that merges information front a new view into the
current inodel. and the component that performs monocular analysis of

an nnage.

As shown in Figare 1 cach view of a given scene (which may he
cither a single niage or astereo pair) anderzoes anal,sis which results in
a 3 wire-frame deseription that represents portions of edges and
vertices of spatial stractares sach as buildings. In order 10 update the
current seene madel (which has been obtained trom presioas views), the
wirc-framie description from the current view must he matched with and
merged into the current model. The matching step provides the
coordinate transformation from the wire frames to the model and
provides corresponding edges and sertices in the two. The combined

result must then he converted into @ new model.

The merging step works as follows, Twe objects, one in the wire-
frame deseription and the other in the model, are merged by Tirst
merging their corresponding pitirs of odges and vertices into single
clements by weighted averages of their positions. Next  hypothesized
clements (faces, edges. or vertices) in the inodel that are inconsistent

with  maodified  clements  mc  deleted. ‘To  determine  whether

hypothesis. For example. if an open polygon 15 completed by
hypothesizing a line connecting the two end points of the chain of

segments, the hypothesized tine is dependent on the two end tines ol the

chain, (f one of these lines is modified or deleted. the hy pothesis must
ilso be deleted. for the conditions ander which it was created are no
longer vatid. After all mergings ind detetions, the renuining capes and
vertices in the wire-Itame object are addad o the model object  After
this is Jdone for all ohjects. ‘Those ohjects which are incomplcte are
completed asing task specific knowledge, ws described in [Herman,
Kanade, and Kuroe 82] [ lerman. Kanade and Karoe 83).

Herman has also been developing a monecular analysis component =

.f

for the 31 Mosaie systew [Herman 83 (in this volime). This component e
. . .

reconstructs the three=dimensionat shape of a complex urlan seene from ,
. i q q R . 9 -
asingle image. His approach eaploits task-specific knowledee imolving b

block-shaped objects in an wban scene,  First, linear connected

structures in the inuige are generated: these are meant o rpresent edges

and vertices of buildings, Next, the 2D stractures are converted into 31D

wire frames, Poally, a sarface-hased deseription of the scone s ey
B P o -~

penerated from the wire frames. I8
fnour database, we have two different views of part of Washington, &

1. Ceoastereo pair for one siew and a single image for the other.
Fventeally we will inerge the 31 wire franes obtained from tie single

image with the scene model obtained from the stereo pair,

2. Theory for 3hape Understanding

AL CMU, we hinve been working on the gecometrical aspects of image
constraints for extricting shape from images. We have continued our
cffort in this important area o develop fundamental theories and their
applications Tor recovering three-dimensional st pes from inrages. Onr

new results inclade;




e Iheory of circular straight homogencous generalized cylinders
[Shaler and Kanade 83}

e Siereo by dynaimic programming in a thive-dimensional search space
[Ohtrand Kanade 83}

» Optical flow mcthods Tor measuring object motion inan N-riy image
sequence [Cornelius imd Kanade 83}

o A method for odtaining topological correspondence of line drawings
of multiple views [Thorpe and Shafer 83]

2.1 Theory of Ceneralized Cylinders for
Vision

Motivated first work in the shadow analysis [Shafer and Kanade 82],
in which the shadow volume is o generalized oyling e and
Kanade [Shufer and Kanade 83 (in this volume) have investigied the
fornual properties ol generatized eylinders. I recent years, Binford's
generalized cyvlinders have hecome an important ool for shape
representation in inage understanding systems [Brooks S1]. - Towever,
rescarch has heen hampered by o lack of wnabytical results for these
shapes.  Shaler and Kanade start with o definivon Tar Straight
Homogencous Generalized Cylinders, those generalized eylinders with a
straight axis and with eross-sections which have constant shape hut vary
in size. This cluss of shapc., while still quite large, has properties which

make considerable analysis possible,

The results begin with deriving fornmulac for points and surface
normals for these shapes.  Theorems are presented cancerning the

conditions under which multiple descriptions can exist for a single solid

lunct Lon-hased
Stepo Analyais

Single Mmoo Lag =
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shape. “Then projections and contour generators are analyed. The
strangest results are obtained for solids ol revolution (which are named
Right Circular SHGCS). for which a closed- form method for analyzing
image contonrs is presented. Shafer and Kanade his shown that a
picture of the contonrs of a solid ol reyolution is ambiguous, with ane
degree of freedom related 1o the angle between the Tine of sight and the
solid’s axis. The wnbiguity can be resol ed by other constraints such as

those Iront shadow contours,

2.2 Cptical Flow Method tor Object Motion
in X-ray Images

In caleuliting optical flow from an image sequence, Horn and
Sclnmek [Horn and Schunck 811 assnmed that the image brightness
corresponding to the sume physicul point does not chinge, together with
the assnmption of smootiness of veloeity over the image. However, this
assumption of zero hnghtiess change severely limits the allowable
motions. Rotations, tanslations in depth. and deformations often result
ina change in the image brightness corresponding to a single pliysical
puint. Also. the assumptions of smoothiess and zero brightness change

do nothold at the benndary af the objeet.

It was shown tht the problems of assunting zevo brightness change is
magniticd when we try to apply the method 1o i X-Tily image sequence.
(I x-ray images, the brightness of cach point depends on the amount
and density of the mass between the x-ray source and the Tilm.)
Cornelins and Kanade [Cornelius and Kanade 83} (in this voluine) have
adapted the optical fow algarithin so that it can handle the brightness
change and cope with the difficulty caused by the smoothness

assumptian across the boundary.  This algorithm asstines: (a) the
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brightness changes corresponding to a single physical point can be
deseribed by the first-order expansion of the image intensity function
Ity (b the velocity  fiekl (".\‘ \") changes simoothly in a
ndghborhood, nnless  the  neighborhood  contains an occluding
buimdary: (¢) the rate of change in brightness (/171 is smooth in a
neighborhood.  An iterative procedure was devised (o cempute the
velocity field and the change of brightness (ic.. changs of thickness in

the case of x-ray images) under these conditions.

This algorithm can correctly recover the object motion from the x-ray
images of an expanding cllipsoid. We have actually applied the method
to real X-ray images ol a dog's heart twken on film at 60 frames a sccond,
in which a radio-opague dye was injected into the pulmoenary artery just
before the image sequence was taken.  For this case, the changes
brightness will reflect the expansion or contraction movement of the
heart in the direction perpendicnlar o the image plane since the dye
filled heartis the primary source of motion, We have generated a movie
of the velocity vectors for an entire heart cycle and shown that it
coincides well with the apparent motion seen in the actual cine

angiogram,

2.3 Stereo by 3D Search

Ohta and Kanade [Ohta and Kanade &3] have been developing a
stereo algorithin to obtain an optimal matching surfuce in a three
dimensional search space. “I'heir approach is purely coniputational.
When a pair of sterco images is rectified so that the epipolar lines are
harizontal scan tines, we can scarch Tor a pair of corresponding points in
right and left images within the same scan lines. We call this scarch
intra-scanline search, 'This intra-scanline scarch can be trented as the
problem of finding a niatching path on a two dimensional search planc
whose axes are right and Ieft scanlines, A dvnamic programming
technigue can efficiently handle this search [Baker 82].  'The intra-
scanline scareh alone, however, docs not take into account mutual

dependency between seanlines in a image: that is, infer-scanlivie search is

necessary (o find the consisteney across scan lines,

As shown in Figure 2, we cast the problem of stereo as that of finding
amatching surlace (i.c.. a set of matching paths) in a three dimensional
scarch space. which is a stack of the 2-1 search planes and whose axes
are left-image x position, right-image x position and the scan line (y
pusition of image). Veriically connected edges provide the consistency
constraints across the scan line axis. ‘Thus, sterco involves two scarches:

one i intra-scanline scarch for possible correspondence and the other is

inter-scantine scarch for consistency between connected edges, Ohta

and Kanade employ dynamic programming for both scarches.

The matching is based on edges, and the positions of edges are
obtained as scro-crossings ol the 11 | aplacian (taken atong cach scan
line) in both left and right images.  The intrasscanline search focates
many partal paths Tor cach pair of left and right scan Tines, s candidates
of components which may consist of the final muching surface, The
inter-scanline search uses those partial paths as clements, and searches
for the combination of them which is most consistent with comected
edges. Phese two searches proceed simultancously, “The criteria (i.c.. the
cost function) in the search involve a monotonicity assumption, the

similarity ofintensity between edges, and surfuce smoothness,

Our main wsk domain is urban aerial photogiaphs, hut images in
crher domains are also used o show the perfomiance of our stereo,
Fignre 3 is a typical exaniple of acrial stereo images. Figure 4 (1) shows
the disparity map obtained, and Figure 4 (b} shows an isometric plot of
the depth map. Notice that the detiled structures of the rool of the
building and the bridge over the highway are clearly eatracted. “The
outpit of this stereo program will be used as another source of 31

information in the ncreniental 3D Mosaic system,

3. MAPS

MAPS is a large mtegrated image/map database system for photo
interpretation tasks. 1t containg high resolution acrial photographs,
digitized maps and other cartographic products, combined with detailed
3D descriptions of man-made and nawral features in the Washington
D. Coarca [McKeown and Kanade 811 [McKeown and Denlinger 82].
In the Septeniber 1982 proceedings, McKeown [McKeown 82] reported
the addition of the concept map to facilitate inquiries at the symbolie
level. Since then, the concept map has been used to build a hicrarchy
tree dita structure which represents the whole-part relationships and
spatial containment of map feature deseriptions [McKeown 83] (in this
volume).  Unlike regular decomposition methods such as quad-tree
organizations, the hierarchical containment tree permits a hicrarchical
search in the database based on natural relations among features which
are intrinsic to the conceptual map and may have some analogy with
how humans organize a “map in the head” w avoid scarch. Thus the
hierarchy tree improves the speed of spatial computations by quickly

constraining search to a portion of the database.

As an application of MAPS. McKcown has started imvestigation of

mle-based  systems for the  control  of image  processing  and
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Figure i (a) Disparity map obtained: (b) lometric plot of the depth
map - Note that the detailed structures of the roof of the
building ind the bidge over the Trecway are detected,
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aiterpretation with respect 1o a world model. ‘The SIPAM system
[McKeown and MeDermou 83 is a system for testing the ided of wsing
the combination of task independent low-level image processing tools, a

rulesbased systentand anap database expert.

4. Systolic Array Processors for Vision

Together with the VESI group of CMU, we have started investigating
applications of systolic array processors iade of PSCs (Programmable
Systolic Chips) [IFisher et al. 83] [isher, et al, A &3] w image processing,
Example tasks we are considering include: smoothing, edge detection,
aptical flow.iterative image registration, and maching by dynanic
programming.  We eapect one o three orders of magnitude
mprosements i the speed of performing these image processing tasks

aver comventional machines.
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IMAGE UNDERSTANDING RESEARCH
AT COLUMBIA

Johu R. Kender
Department of Computer Feience, Columbia University
New York, NY 10027

Abstract

The Image Understanding Project at Columbia has
centered its efforts on  basie  “mnddle-level”  vision
rescarch: the representations and algorithins concerned
with  deriving surface information from low-level
aggregate cues. At present, the effort has four major
concerns: theory and analysis, integrated systems, imsge
rescarch aids, and high-spéed hardware.  This report on
our first full year summarizes our progress in cach of
these areas,

1 Introduction

The Image Understanding Project at Columbia is
new and small, but growing. %n our first full year, we
have acquired an operating laboratory, and defined and
attacked our research concerns, é(‘urrcntlv, our
experimental base consists of a VAX 750 with Grinnell
275, with CMU image and graphic scftware operating on
USCH’] and other images. Additional hardware and
software enhancements are planned.)

Our research emiphasis is on that level of image
nnderstanding that modcrates low-level cues into surface
information. We have developed several new algorithms
that make some of these transformations possible, and
have vegun to guantify their accuracy. Work is under
way to integrate several of these surface-constraining
algorithms into a coherent, distributed systemn; two
separate free-running algeritlims have been executed and
are being refined. ~ Because the algorithms and their
control is complex, we are implementing various graphic
ways in which the rich intermediate data can be
represented casily to the experimenter.  Lastly, we have
devised and simulated some f(n\\'-l(»\-('l vision algorithms for
2. nlm'(-ll supercomputer being independently (fevclopcd at

‘olombia.

2 Theory and Analysis

Much of our theoretical work concerns the
calculation of surface orientation constraints fromn low-
level image cucs.  One representation that has proven
very useful for this and other tasks is the gradient space--
imdependently of whether the image is taken under
orthographic or central projection. We have helped to
snmmarize some of its most salient properties (especially
those nnder projegtion) in a type of researcher’s reference
card [Shafer 83: Shafer 82’. Ve have also highlighted
some of the difficultics that can occur under perspective;
algorithms known for their utility under orthography can
fail in unexpeeted ways [Nender 82a].

Many of the algorithms we have devised for our
middle-level  work are derived from a central
methodological paradigin called ‘‘shape from texture’
[Kanade R83; Kender 82D]. We have now applied the
paradigm in two additional areas, deriving additional
surface constraint relations and procedures.  {Versions of
these two papers appear m this proceedings.)

The first area concerns gravity, which induces
certain preferred scene orientations. We have shown how
gravitationallv-related labels such as ‘“‘vertical” can be
nsed in the gradient space, and how such knowledge can

enerate additional constraints on surfaces [Kender 83a;
vender 83D].  In particular, we have shown that scnsor
parammeters, surface parameters, and environmental labels
mutually interact so that knowledge of any two constrains
the third; further, often this knowledge can be
heuristically derived using Hough-like methods.

The second area concerns linear extents: image
primitives that possess measurable length. We have
shown how assumptions of equality of extent provide
surfaces constraints, sometimes in  non-intuitive ways
[INender 83c]. In particular, under orthography, lengths
behave vcre' much like right angles; under perspective,
certain conligurations induce several simple iconic {image
plane) geometric eonstructions for vanishing points.

Lastly, we (David Lee) have initiated the analysis of
the error behavior of a few of these algorithms.” We
believe that a fruitful framework is that of the
information-centered  approach  under  independent
development at Columbia.” We expect to be able, given a
desired accuracy of surface orientation, to derive lower
limits on the resolution necessary in the image, or on the
confidences necessary in the image primitive array.

3 Integrated Systems

We (Mark Moerdler) have started work on the
design and implementation of a middle-level vision system
that integrates knowledge about surfaces from mmltiple
independent sources.  P’resent design is patterned on 1!he
blackboard model of perceptive systems. Each source
derives surface information on the basis of one particular
shape algorithm.

Two such sources have heen coded.  Although
srinntive and under refinement, their results are shown 1n
he fignres following this report. Figure 1 shows a
synthetic image (“Manhattan’ Sunrise’) with two surfaces
simring a common orientation; the lower surface is
composed of two textures. In Fignre 2, an algorithm
based on equal extents,_a{)plled to the “‘waves', generates
multiple vanishing points, very near the actual (but
invisible) vanishing line. In Figure 3, an algorithm based
on the detection. of colinearities’in random textures (Peter
Wescley), applied to the “sand”, gencrates a smear of
vanishing points that straddles the vanishing line. Since
vanishing lines map one-to-one into surface orientations
t!llvso two algorithms implicitly calculate local slant and
tilt.

4 Image Research Aids

One problem with the development of image
understanding systems is the vast amount of complex
intermediate data that they prodnce. In particular, the
middle levels of vision are replete with partial assertions
about the underlying surfaces.
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Since surfaces have two parameters of orientation and one
parameter of depth, and since each image |r)0mt may have
multiple surface hypotheses, the problem o observing and
understanding an - exceuting system becomes one of
lhuman-compatible graphic economy.

We (Paul Douglas) have begun research into the
various modalities ofghum:m vision that can be exploited
in this task. Primarily, we are constructing a surface
synthesis system that “will artificially texture {locally
planar) regions of an image in ways that snggest their
orientations. Additionally, we have begun to explore the
ways in which orientation uncertainty and/or constraints
can be graphically displayed by means of icons, motion, or
color, ~Our initial 1cons’ are based on “sequins” {circles
seen in perspective).

5 High-speed Hardware

Several parallel machine architectures have been

;o}poso(l that_perform lma%c understanding algorithins at
tigh speed. The NON-VON supercomputer being built at
Columbia is a tree-structured one. Its Brimary processing
system consists of a very large number of very sma
processing elements (}Pbs), cach containing a small
amount of RAM and some hardware for performin
arithmetic and logical operations. The PEs are connecte
together in the %orm of a complete binary tree. We
(lﬁlssvm Ibralim) have found that this architecture lends
Itself casily and naturally to the representation and
manipulation of binary images by quad trees.

A Dinary picture at its finest resolution is stored in
the leaves of ‘the tree, with each PE holding one picture
pont. Iligher levels in the tree represent coarser
resolutions; bu1|ding the quad tree can be done in
logarithmic time. (onnoc(cg components can be found in
time proportional to the number of nodes actually
representing regions in the tree. Several other algorithms
for region properties again take logarithmic time. These
algorithms “have all been tested on a simulator.  We
expect to develep - the usual complement of image
processing routines, with a target task in mind.
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Figure 1: “Manhattan Sunrise’” synthetic image.
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Eqnal extent method applied to waves.
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Figure 3:  Colinearity method applied to image;
leftmost vertical quarter only,
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Our overall approach to the study of wiston is based
on ¢ number of represcntations of the visible world,
reviewed in previous Image Understanding Proceedings.
Our work to date has concentrated primardy on the
initial representations such as the primal sketch and
reflectance maps, and the computation from them of
depth, surface orientations, and material properties.
Our current emphasis s on the integration of the
different sources of information, the analysis and
representation of shape, the refinement and evaluation
of the individual modules, the eztenston of our approach
to deal with time varying tmages and moving objects,
and the transfer of our results to real time hardware
implementation. In this report we review our recent
work on the analysis of cdge detection, the measurement
of wisual motion, the correspondence problem, the
rcfinement and evaluation of stereo algorithms, the
detection of depth discomtinuities, the integration of
surface maps, and the interpretation of shape from
contours, and the acquisition of objects with photometric
stereo.

1. Edge detection analysis

Much of our work on edge detection, discussed in
previous Image Understanding Workshops, used the zero-
crossing contours in the image filtered through V2G filters
of different sizes. Any edge detector scheme to be used in
practical applications must show considerablc robustness
and immunity to various types of noise. Continuing his work
aimed at developing a practical real time sterco-matching
system, Nishihara has examined reccntly the effect of
image noise on the V2G convolution and the zero-crossing
contours. In parallel with the effort of developing further
our standard edge detection techniques and improving their
reliability, we are also pursuing new approaches to the
edge detection problem. In particular, we are developing,
implementing and testing a new line finder . In another
investigation we are characterizing general properties of
edge detection schemes. We have also established some
results connecting the locations of zero-crossings with the

principle lines of curvaturc of a surfacc. We now revicw
each of th»se four topics in turn.
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MIT PROGRESS IN UNDERSTANDING IMAGES

T. Poggio, S. Ullinan and the staff

The Artificial Intelligence Laboratory, Massachusetts Institutc of Technology

Noise Sensitivity of Zero-crossings

Distortions duc to noisc can be considercd as pertur-
bations of the shapes of regions of constant sign in the
convolution output. Zcro-crossing patterns are generally
stable in the presence of low {0 moderate iinage noise levcls.

The most cornmon serious distortion of these patterns—
for stereo matching—occurs when two adjacent rcgions of
constant sign merge or a singlc region splits as a function
of noise introduced by the cameras or changing camcra
position.

Only a small number of pixels necd change sign at
strategic locations in order for such merges and divisions to
occur, resulting in a large scale change of the zero-crossing
geometry. The frequency of these changes is low in a high
quality image, but they cannot be avoided when noise is
present and contrast is low, a ubiquitious phenomenon in
practical images. This distortion turns out, however, to be
strongly confined to spccific spatial neighborhoods of the
image where the convolution magn.tude is small. Qutside
these neighborhoods, the convolution sign is constant and
stable, even for relatively large noise levcls. The sign-
representation dual of the zero-crossing also promises to
yield more easily to a careful statistical analysis. Nishihara
is investigating ways in which the approach can be used
to improve noise tolerance in stereo matching [Nishihara,
1982, 1983).

Optimal edge detection operators

Canny [1983] has investigated the problem of deriv-
ing an optimal edgc detection opcrator from a precise
formulation of detection and localization [Binford 1981].
He finds that the optimal shape is (approximately) the
first dcrivative of a Gaussian. An important property of
an edge detector is that it should produce edge tokens
that are accurately located. It should also have a low prob-
ability of misclassification of cdges (i.e. it should produce
few erroneous edges and still be able to detect weak or
noisy cdges). In particular, the operator should not produce
multiple responscs to a singlc edge. The ability to cor-
rectly classify potential edge points relates dircctly to the
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signal-to-noise ratio of the output of the operator, which
is frequently used as the design criterion for an optimal
detector. The localizing ability of the edge detector is often
cither ignored or only indirectly treated.

Canny’s derivation consists of three steps. First, the
design is constrained to linear operators only. Second, the
optimal lincar operators are combined in a non-lincar way
that is again optimal (or near optimal) with respect to
the criteria of detection and localization. Finally, the edge
points output from the non-linecar detector are processed
by a line-following procedurc which assigns labels to the
segments of contour and to each scgment a sct of parameters
that describe the type of edge transition (amplitude of the
step, uncertainty in amplitude, uncertainty in position). The
resulting operators have been implemented in microcode
on a LISP machine, and form the basis for our work
on smoothed local symmetries and shape from contour.
The operator has also been applied to textured images to
generate hicrarchical texture descriptions.

The linear operator is directly optimized with respect
te, both signal-to-noise ratio and localization. Canny shows
taat there is an uncertainty principle relating the two
quantities and that, because of noise, an edge cannot
be simultaneously detected and localized with arbitrary
precision. There is a unique operator shape (approximately
the first derivative of a Gaussian) that attains this limit.
The width of the operator determines the tradeoff in output
signal-to-noise ratio versus localization. A narrow operator
gives better localization but poorer signal to noise ratio
and vice-versa. To handle variations in the signal to noise
ratio in the image, operators of several widths are used.
Where several operators respond to the same edge, one of
them is selected by the algorithm so as to give the best
localization while preserving an acceptable signal-to-noise
ratio. When the one dimensional formutation is extended
to two dimensions, the same criteria of optimality are used.
This leads to a system of directional operators, with their
noise estimation and edge detection all being performed
independently.

The automatic switching between operators requires
local estimation of the noise energy in the operator outputs.
This is difficult because there is little information available
at the operator outputs to indicate whether a response is du
to an edge or to noise. Canny has developed a scheine that
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uses a morlel of an edge (in this case a step edge) to predict
the responsc of cach operator. Ile then removes responses
of this type to leave the response due 1o noise alone. The
noise estimation is done from the outputs of the operators
rather than directly froin the image, because detection and
localization performance is determined by that component
of the image noisc parallel to the operator direction, and
which lies within the bandwidth of the operator. Where
image noisc is not spectrally flat, and in particular where
there is fine texture (element size much smaller than the
operator width), the texture may be modelled as directional
noise, and the detector will still be able to respond to weak
edges in directions where there is little texture energy.

The detector is being evaluated in comparison with
several other well-known detectors, such as the Marr-
Hildreth Laplacian of Gaussian operator (1980) and the
sccond directional derivative detector of Haralick (1982).
Experiments are being performed using the operator as the
front end for the Marr-Poggio sterco algorithm (Grimson
1981a,b) as well as subjective evaluations of the detector
output on a variety of natural images, in particular on
images that contain boundaries between textured regions.
The multiplicity of operators enables the detector to locate
intensity changes that are occurring at different scales in
the image. The use of directional operators allows it to find
weak linear edges when the signal to noise ratio is very
poor. It is felt that linear edges form an important subclass
of intensity changes and that they occur often enough in
real images to warrant special treatment. The traditional
problems with highly directional operators were that they
tended to extend the boundarics of objects beyond corners
and gave polygonal responses to curved surfaces. These
are dealt with in the new detector by the addition of
applicability constraints for each directional operator based
on how well the image locally approximates a lincar edge.

The detector has also been used as the front end for
two hand-eye vision programs. The first of these simply
tracks contours drawn on sonie surface. The second takes
the raw edges that mark the boundaries of objects and
produces bounding polyhedra of minimum additional area.
The latter will be used in conjunction with automatic path
planning programs.

Parallel to Canny’s develupment of an optimal edge
detector, Poggio and Torre have begun an investigation,
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presently in progress, of edge detection by dividing the
problemn into two main steps: a derivative operation and
a filtering operation to reduee the noise. Lach of these
steps can be charaeterized in general terins. If the detection
of edges is based on detection of cxtrema in the output
of the filter then direetional derivatives should be used
in conncction with direetional odd filter funetions. If edge
detection is to be performed via zero-crossing deteetion then
rotationally syinmetric differential operators must be used
together with symmetrie filter functions. If the differential
operator is lincar the two steps of differentiation and filtering
commute and associate with interesting implications for
fast hardware. For nonlinear differential operators the two
operations in general must be performed separately and
furthermore their order is important. Poggio and Torre have
examined in particular two rotationally symmetric operators
: the second direetional derivative along the gradient — a
non-linear operator - and the Laplaeian - a linear operator.
It is easy to show that there are edges that escape deteetion
by the Laplacian but not by the seeond derivative along the
gradient. Furthermore, the zero-crossings of the Laplacian
coincide with the zero-erossings of the seeond directional
derivative along the gradient if, and only if, the mean
curvature of the intensity funetion is locally zero.

Three classes of filters have been analyzed in detail:
bandliniited, support limited and filters with minimal
uneertainty in space and frequency. The filters of the first
class can be synthetized in terms of linear and circular
prolate funetions; in the second elass, Haar funetions are
the most interesting basis for optimal filters; the third
elass leads to the study of Hermite funetions. Poggio and
Torre derive formulae for eomputing the uncertainty of an
arbitrary filter using its decomposition in Hernite functions.
They also observe that a filter of minimal uneertainty
eombines maximum localization in space with a minimum
number of zeros in its output to Gaussian white noise.
In particular, the sceond derivative along the gradient,
suecessively smoothed by a eireularly symmetrie Gaussian
filter is a near-optinal sehemc in terms of these criteria.
In a separate investigation, we report on a 2-D version of
Logan’s theorem, which gives sufficient conditions for the
completeness of the zero-crossing representation in the case
of dircctional bandpass filters [Poggio et al., 1982].

Lines of curvature and zero-crossings

13

In reeent years, workers in vision liave shown con-
siderable interest in the principal lines of curvature of sur-
faees. For example, curvature patches have been proposed as
a representation for visible surfaces [Brady 1983] and there
exist varions sehemes for dividing objeets into parts based
on extrema and zeros of curvature [Brady 1983, Hollerbach
1975]. There is also some evidence from line drawings
[Stevens 1981] that curves in an image are interpreted as
lines of curvature. However, it has been suggested that the
prineipal lines of curvature of a surface can only be com-
puted indirectly and with great difficulty. The complexity
of the caleulations also implies poor numerieal behaviour
and excessive sensitivity to noise.

Yuille [1983] proves some results about zero erossings
and the principal lines of curvature of a surface. He relates
the image to the underlying surfaee geometry by the image
irradiance equation [Horn 1977] and suggests that the
principal lines of eurvature can be computed directly from
the image.

Various direetional zero crossing operators are con-
sidered. It is shown that direetional zero crossings do not
necessily correspond to physieal zero crossings (i.e., those
that correspond to sharp changes in the image irradiance).
A result is derived that implies that directional zero eross-
ings are physical only if their direetion 18 along the line of
greatest ehange of the image irradiance. Such direetional
operators have heen argued for by Canny [1983] and Poggio
and Torre [see Poggio, 1982, 1983]. Conversely, a probabil-
istie argument shows that the directions of greatest ehange
of the image irradiance are most likely to be along the
lines of principal curvature. This suggests that many, if
not most, of the physical zero erossings are directional zero
erossings along the prineipal lines of curvature,

Finally, Yuille proves some results about the distribu-
tion of zero erossings along lines of eurvature. The start-
ing point is the work of Grimson on surface consistency
[Grimson 1981b]. With relatively weak assumptions about
the reflectance funetion, Grimson derived Neceessary and
sufficient eonditions in one dimension for the vecurence of
direetional zero erossings in the image irradiance in terms
of the surfaee geometry. He then used some probabilistic
assumptions about the reflectance surface to extend this
result to two dimensions and prove the Surface Consistency
Theorem. This theorem was the basis for his theory of
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surface interpolation.

Yuille shows, without any probabilistic assumptions,
that Grimson's result can be generalized to give necessary
and suffieient conditions for the occurence of directional
zero erossings along the principal lines of curvature. We call
this result the Line of Curvature Theorem. It suggests
that many, if not most, of the physical zero crossings can
be associated with points on the lines of principal curvature
which are near the extrema of the principal eurvatures.
This supports the view that lines of principal curvature can
be computed directly from the image. In turn it supports
the curvature patch representation.

2. The computation of visual motion

In the area of visual motion analysis, Hildreth and
Ullman have explored a zero-crossing based approaeh to
the computation of the two-dimensional veloeity field from
the changing image [Hildreth & Ullman, 1982; Hildreth,
1982, 1983; Ullman & Hildreth, 1983]. The starting point
was the work of Marr and Ullman (1981), in which the
initial detection of motion takes place at the location of
zero-erossings in the output of the convolution of the image
with a V2G operator. The main computational reason for
restricting initial motion measurements to the zero-erossings
is that they correspond to locations in the image for whieh
the gradient of intensity is locally maximum, and henee
yield the most reliable motion measurements [Hildreth, in
press|. Hildreth and Ullman have extended the work of
Marr and Ullman, to allow for the computation of the
projected two-dimensional velocity field that results from
the general motion of three-dimensional surfaces in space.

Due to the aperture problem, local measurements
of movement in the changing image only provide the
eomponent of velocity in the direction perpendicular to the
local orientation of a zero-crossing contour. In partieular,
let V(s) denote the velocity field along a contour (s denotes
arclength). V(s) can be decomposed into components
perpendicular and tangent to the curve:

V(s) = vh{s)ul(s) + vT(s)uT(s)

u-l(s) and uT(s) are unit direction vectors perpendicular
and tangent to the contour, and v-l(s) and vT(s) are the
magnitudes of the two velocity components. The first term
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in the above expression can be measured directly from the
changing image. The second term cannot, and must be
recovered to compute the velocity field V(s)

The main theoretical problem for this recovery is that
V(s) is not specificd uniquely by information available in
the changing image. Additional eonstraint is required to
compute a unique velocity field. Drawing from the work of
Horn and Schunck (1981) on the optical flow computation,
we use an additional constraint of smoothness of the velocity
field. Physical surfaces are generally smooth, compared with
their distance from thc viewer; under motion, they usually
generate smoothly varying veloeity fields. To compute a
single velocity field, we find the velocity field which is
consistent with the changing image, and varies the least.

Through a mathematieal analysis, it was found that the
above smoothness constraint ean be formulated in such a
way that a unique veloeity field solution is guaranteed. In
particular, the local change in V(s) is given by %¥; a scalar
measure of this change is given by its magnitude, |%¥|
The total variation of velocity over an entire contour ean be
obtained by integrating this local measure over the curve.
The velocity field computation then seeks the velocity field
that is consistent with the changing image, and minimizes
total variation in velocity along contours. It can be shown
analytically, that there exists a unique veloeity field that is
consistent with the measurements of v-L(s) obtained from
the image, and that minimizes the partieular measure of
total variation given by: f[%¥[2ds.

There are two elasses of motion for which the veloeity field of
least variation is the correct physieal velocity field, assuming
orthographic projection of the scene onto the image.
The first consists of arbitrary rigid ohjeets undergoing
pure translation. The second consists of three-dimensional
objects, whose edges are straight lines, undergoing rigid
rotation and translation in space. For the elass of smooth
curves in rotation, the velocity field of least variation is, in
general, not the physically correet one. However, it is often
qualitatively similar. For examples in which the true and
smoothest velocity fields differ significantly, it appears that
the smoothest velocity field may be more consistent with
human motion perception.

The velocity field computation has been implemented,
using a standard iterative algorithm from mathematical
programming, known as the conjugate gradient algorithm,
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If there are n parameters to compute (in our case, the z and
y components of velocity), this algorithm is guaranteed to
converge to the final solution in at most n steps. The method
has becn applied to a number of images. Qualitatively, it
appears to give good rcsults for unrestricted motion. We
plan to evaluate the method further on both synthetic and
natural images in the near future.

To summarize, the computation of the two-dimensional
velocity field consists of two main steps: (1) initial motion
measurements are obtained along zero-crossing contours,
and provide the component of velocity perpendicular to the
contour, and (2) motion measurements are then integrated
along the contours, to compute the two-dimensional velocity
field V(s) that minimizes total variation, given by the
measure: f|%¥]2ds. Formulated in this way, a projected
two-dimensional velocity field can be computed for rigid
and non-rigid surfaces undergoing gencral motion in space.
The computation can be implemented with standard op-
timization algorithms. Computational experiments support
the feasibility of this approach to motion measurement.

3. The correspondance problem

A very general approach to the correspondence problem
in either stereo or motion consists of taking a large
set of local measurements for each pixe! of the image
and matching the most similar sets between the two
images. These measurements can be regarded as nonlinear
functionals representing the “primitives” on which the
nateling provess operates. Wateling sonstraints, dictated
by the specific problem, may easily ensure uniqueness of
matching. Although a large set of primitives may appear
rather cumbersome and difficult to compute, massive
parallel processing which begins to be feasible with the
new solid state technologies, makes a scheme of this type
quile atiractive. Furthermore, the resulting speciticity of
matching primitives may avoid the extended use of complex
constraints which are more difficult. s imnlenient ic » highly
concurrent system.

The main problem is the choice of the appropriate
class of functionals. Poggio has considered the abstract
computational properties of a specific class of nonlinear
functionals, i.e., polynomial functionals [Poggio, 1983].
For the correspondance problem in ideal noise-free and
distortion-free images, a complete set of linear functionals
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can be proved to be sufficient: nonlincar functionals cannot
improve the matching (since lincar functionals scparate
points in a Banach space). In practice, however, the nuinber
of measurements is finite and actually relativcly small; under
these conditions nonlinear operators might represent more
compactly the relevant information. For instance, zero-
crossing maps of V2G convolved images can be considered
as the output of a quadratic functional opcrating on the
image with support equal to thc underlying Gaussian.
Kass and Poggio are presently exploring correspondence
schemes based on sets of nonlinear functionals. This effort
is motived by a recent algorithm developed by Kass to
solve the correspondence problem and based on a large
set of linear functionals. The algorithm is bascd on the
paradigm of combining independent measurements. The
underlying idea is that if a dozen or so independent
indications of correspondence can be combined, then no
single measurement need be dependable in order for the
combination to be quite reliable. A set of nearly independent
linear filters based on first and second derivatives of Gaussian
smoothed images was used by Kass. He was able to show
that a particular computation based on these measurements
can reliably determine correspondence for textured images
with signal to noise ratios of two or more. An algorithm
performing this computation has been applied to a few
natural images with encouraging results. The algorithm
ard its implenientation are discussed in detail in these
Proceedings [Kass, 1983)].

4. Refinements and evaluation of stereo algotithms

In previous IU reports, we have described the theory
and implementation of Marr and Poggio's theory of human
stereo [Marr and Poggio, 1979; Grimson and Marr, 1979;
Grimson 1980, 1981a, 1981b]. The input to the stereo
matcher is obtained by convolving the left and right
images with a number of Difference-of-Gaussian 7 lters and
locating the zero-crossings in each such convolution. The
tualching proceeds in a coarse w fine manner, finding
zero-crossings of the same contrast sign and roughly the
same image orientation, within a predetermined range along
horizontal slices of the rectified images, based on the general
distribution of zero-crossings. As a consequence of testing
the algorithm on a wide range of natural images, a number of
modifications to the published algorithm have been made.
First, the matching of zero-crossing points independent
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of their local context may lead to isolated incorrect
matches. In the original published algorithm, a continuity
constraint is applied using statistical ineasurements over
arcas of the image. While this was dcmonstrated to
be sufficient on a range of test images, it occasionally
led to incorrect matches near surface discontinuities or
occlusions. Similar to the work of Mayhew and ITrisby
[1981] and Baker and Binford [1981], we have developed
a continuity constraint that checks for consistency along
zero-crossing contours that typically correspond to a single
physical edge. This constraint implicitly incorporates the
Z€ro-crossing orientation constraint, and may be considered
as being equivalent to matching a zero-crossing contour
from one image against an envelope about a contour
in the other image. Second, we have also investigated
the sensitivity of the algorithin to vertical disparity and
other image distortions. We have found that there is
tradeoff between the resolution of disparity information
computed by the algorithm and the sensitivity of the
algorithm to vertical disparity. Computational experiments
on acrial photographs have led us to redefine the matching
algorithm to match zero-crossings from a line in one
image to zero-crossings lying within 2 or 3 lines of
the corresponding line in the second image, reducing
the resolution of the available disparity information, but
enabling the algorithm to match rectified images containing
small residual amounts of vertical disparity. As in the
original algorithm, vertical disparities beyend this range
are handled by explicitly changing the vertical alignment of
the images. Interestingly, psychophysical data suggest that
human stereopsis relies on a registration process mediated by
appropriate eye movements, to correct for vertical disparities
larger than about 4’-7' (Nielsen and Poggio, forthcoming).
We are presently exploring in a computational analysis
the properties of the registration process with the goal of
implementing this stage as an integral part of our stereo
algorithm. In a separate investigation, Nishihara and Poggio
(1982] have found additional support for the matching
primitives used in our stereo algorithms. They have shown
that the sign of the convolved images or cquivalently
the zero-crossings, contain sufficient information for the
matcher to operate successfully even in random-line stereo
pairs invented by Julesz and Spivack and ciaimed to require
the computation of vernier cues.

The main emphasis of work on the Grinison implemen-
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tation of the Marr-Poggio theory in the past year has
been in applying the algorithni to aerial photography. The
images tested have contained a variety of scencs. Inelnded
in these are two stereo pairs of sections of the University of
British Columbia, provided by the Faculty of Forestry. One
is of a combination of apartment complexes and natural
terrain, (including several hundred foot high Douglas firs).
The second is of a hospital complex, with a variety of
different sized buildings. The third pair, supplied by Boeing
Corporation, is of a conplex highway intersection. The
fourth pair, supplied by the Defense Mapping Agency, is of
natural terrain, as is the fifth pair, supplied by the Army
Engincering Topographic Labs. The sixth pair, supplied
by Stanford University, is the CDC synthetic images of a
building complex. An inforial evaluation of the results in
currently underway in conjunction with ETL.

The performance of the matching algorithm can
be evaluated on two grounds, matching efficiency and
disparity localization. Matching efficicncy refers to the
actual correspondence process applied to the zero-crossings
contours. While the specific numbers clearly depend on
the particular structure of the images, for these types
of images we typically find that on the order of 75 to
80 percent of the available zero-crossings are assigned a
correspondence {(and that this usually rcpresents on the
order of 10 percent of the iimage for normal sized DOG
filters). Of these matched zero-crossings, usually on the
order of 99.5 percent of them arc correct, in that they are
matched to the correct zero-crossing contour in the second
image. Disparity localization refers to the accuracy of the
disparity values associatcd with a match, a value that is a
function of the localization accuracy of the Marr-Hildreth
cdge detector as well as of the matching process itsell. An
evaluation of the localization accuracy of the algorithm on
these images is currently underway jointly with ETL.

A different algorithm, whick also represents an evolu-
tion of the original sterco theory, has becn developed
by Nishihara with the goal of perfecting a high speed,
noise tolcrant stereo matcher. Specifically we are studying
techniques for minimizing a matcher’s sensitivity to such
distortions in noisy signals as might occur in low contrast
images and in applications where lower quality cameras
are used. Nishihara has found that noise sensitivity can be
reduced significantly by trading off resolution for reliability
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in much the same way that Marr and Poggio (1975) o:iginally
proposed trading off resolution for disparity range.

[ie has implemented a prototype matcher * + v these
results on top of the realtinie convolution hardware he
developed earlier with N. Larson (Nishihara & Larson,
1981). The system currently produces a 16 by 16 array
of depth measurements every 15 seconds from vidicon
camera images having order 10-20 percent noise levels. The
matching volume of the device is approximately a cube
with depth resolution somewhat better than its present 16
by 16 spatial resolution. Conversion to microcode from lisp
should allow a doubling of the resolution obtained while
niaintaining or reducing the matching time.

5. Integrating surface maps

Computational vision requires the construction of rich
descriptions of surface shape. Marr and Nishihara's 21D
sketch [Marr, 1982], a viewer-centered description of the
visible surfaces in a scene, is an important intermediate rep-
resentation on the road to surface analysis and, ultimately,
to object recognition.

In previous reports we have described work by Grimson
and Terzopoulos on the interpolation of shape information
in locations were it is not specified exactly by the image.
In addition to extensions of the surface interpolation
theory and the problem of computational efficiency, our
recent effort in the recovery and representation of surface
information concentrated on the problem of integrating
information of surface shape from different sources. This
section summarizes the work by Terzopoulos and by
Grimson in this areas. The following section describes our
research in a related area - the problem of detecting and
dealing with discontinuities.

Current, work by Terzopoulos examined four problems
in the visual analysis of surfaces. The four are: (i) the
constraint integration problem; (i) the discontinuity
problem; (iii) the interpolation problem; and (iv) the
computational efficiency problem. Some of the work
on interpolation of smooth surfaces from raw, scattered
constraints on surface shape [Grimson, 1981a,b; Brady and
Horn, 1983; Terzopoulos, 1982], and investigations in.n
computational efficiency, which came to fruition in the
development of an extremely efficient multilevel surface
reconstruction algorithm [Terzopoulos, 1982, 1983], have
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been described in previous reports. We shall therefore
concentrate here on recent advances in our study of the
constraint integration.

Integrating Counstraints from Several Visual Sources

Each vicual mcdality constitutes a distinct source of
partial mformation constraining surface shape. Processes
such as stereopsis and analysis of motion naturally generate
local depth constraints, while processes such as shape
from shading, texture, and contours naturally provide
local surface orientation constraints. Surface reconstruction
necessitates the integration, over several sources, of these
two classes of scattered constraints.

Surface reconstruction was formulated in terms of a
physical model — a variational problem describing the
equilibrium of a thin, flexible plate subject to constraints.
[t involves the following plate energy functional:

Ep(v) = //{; %(Av)z —(1— U)(v”vw — viy) dz dy.

In the generalized formulation, the influence of various
constraints on the plate interpolating surface is governed
by additive penalty functionals [Terzopoulos, 1983b]. Depth
constraints are handled by the functional

1 & 2
Ed(v) F5 Z ﬁ(ln,y:)[v(zi’ y’) = dlzlyy‘)J !
2 (zuwleD

while orientation constraints are handled by

1
EO(U) oy E( 2; P ap(zuyt)[vz(zi, yl) = p(z‘ly‘)]z +
ZuY% [
1
5 2 O lvy(i %) — g’
2 (z,3:)€Q ) ’

so that the total energy functional to be minimized (over
an appropriate Sobolev space of admissible functions) is
£(v) = &(v) + €4(v) + E(v). The reconstructed surface
is the minimizing function v = u(z,y) representing a thin
plate surface at equilibrium, subject to the influence of
either scattered depth constraints, or scattered orientation
constraints, or both. In this way, all available constraints
generated by various sources are employed as an integrated
whole, and the reconstructed surface is the best possible in
view of the available information.
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Tosummarize, Terzopoulos’ work in surface reconstruc-
tion, as described in the last report, has been successfully
generalized to deal with the constraint integration problem.
He is currently refining and testing his computational theory
of visible-surface representations, aiming toward a more
complete understanding of the structure of the 2}-D sketch.
In addition, he is exploring the applicability of techniques
that have proven to be valuable in surface reconstruction,
such as the finite element method and multilevel relaxation
methods, to other problems in low- and intermediate-level
vision, including lightness, shape from sha. 3, and optical
flow. Preliminary results are encouraging.

Combining stereo and shape—from-shading

Previous reports have described our work on surface
reconstruction, mostly based on constructing complete
surface representations, consistent with the image irradiance
information, from stereo depth data. While acceptable
surface reconstructions can be obtained strictly from depth
information, it is clear that additional boundary constraints
would lead to more accurate surface representations. In
order to seek such additional boundary information, we
have investigated the mathematical relationship between
the Marr-Poggio theory of stereo and Horn's work on
shape from shading. Grimson [1982b] Lias shown that if the
reflectance map [Horn and Sjoberg 1979] is known, then
given a pair of stereo matched depth contours it is possible to
determine the surface normal along the deptl contour. The
proof suggests a technique for finding surface normals that
is essentially analogous to photometric stereo, pioneered
by Horn, Woodham, and Silver [1978]. Conversely, it is
possible in principle to determine certain visible surface
characteristics from stereo information. Suppose that the
reflectance map is of the form

R(#) = p|(1 — a)(n — 5) + a( — h}¥],

where p is the albedo, o determines the convex combination
of the specular and matte components of the reflectance,
and k is the degree of specularity. Provided one can identify
points of high curvature along the zero-crossing contours,
it is possible to determine the values of the parameters k, p
and a for the corresponding portion of the image (since the
values could change with changing surface material). Using
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an interocular separation consistent with the separation of
human eyes, the technique is most effective at a distance
of about one meter. The technique may find application to
wvide angle stereo, however, where the nuinerical stability
of the algorithm is expected to increase.

6. Finding Discontinuities

The geometric properties of surfaces are almost cer-
tain to be discontinuous at certain locations in the scene.
Depth discontinuities occur along occluding ¢ ‘ntours, while
orientation discontinuities occur along surface creases.
Discontinuities in surface geometry are usually, but not
always, reflected in image intensities. Terzopoulos [1983a]
decomposes the discontinuity problem into three sub-
problems: (i) the detection of discontinuities in surface
geometry, (i) the explicit representation of these discon-
tinuities, and (iii) a characterization of their influence on
visible surface reconstruction.

He argues that the first subproblem has a widespread
basis in early visual processing. The detection of discon-
tinuitiesis certain torequire the conjunction of simultaneous
events in several visual modalities; for example, the ccin-
cidence of texture boundaries or motion boundaries with
sudden disparity changes. If early visual processes are made
sensitive to such events, many prominent discontinuities
in surface geometry may be hypouthesized before surface
reconstruction begins. On the other hand, discontinuities
which are subtle or hidden in the primal sketch, such as
those which typically occur in random dot stereograms must
await detection until the surface reconstruction stage, when
a full depth map becomes available. Terzopoulos has ex-
perimented with a simple method for detecting and localiz-
ing depth discontinuities during the surface reconstruction
process. Localization involves finding inflections in the
bending moments of the plate interpolating surface, while
detection relies on the occurrence of significant disparity
gradients. The method may bz conceptualized as a type
of edge detection over a tentative, dense depth map, and
it amounts to thresholding according to the magnitude of
the surface gradient at zero crossings of the Laplacian of
the surface. Constraints on binocular imaging geometry can
dictate appropriate bounds on the threshold.

The thin plate surface reconstruction model also
suggested how to apply the finite element .nethod to
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appropriately inhibit surface interpolation across discon-
tinuites, once they have been made explicit. In par-
ticular, the surface reconstruction algorithm was general-
ized to handle depth discontinuities (i.e., occluding con-
tours) and surface orientation discontinuities (i.c., creases).
Generalization involves “breaking” the interpolating plate
along depth discontinuities and “joining” plate patches
by strips of membrane along orientation discontinuities,
thus reconstructing piecewise smooth surfaces. [The math-
cmatical details are presented in Terzopoulos, 1983b]. Once
discontinuities have been detected, say, by the method
described in the preceding paragraph, the reconstructed
surface may be improved by a few additional relaxation
iterations.

7. Shape description
Smoothed local symmetries

The description of two- and three-dimensional shape is
crucial for recognition. Brady [1982a, 1982b] has developed
a representation of two-dimensional shapes that combines
certain features of two-dimensional projections of general-
ized cylinders [Nevatia and Binford 1977, Brooks 1981] and
the symmetric axis transform (SAT) [Blum and Nagel 1978).
The representation has been applied to determine where to
choose grasp points on a lamina for a two-fingered robot
hand.

The smoothed local symmetries representation has four
components. First, locai symmetry is defined in a way that
differs from that implicit in the SAT. Second, axes that are
smooth loci of local symmetries are computed. In this way,
smoothness of axes is made explicit, rather than being left
implicit as in the symmetric axis transforin. Third, axes
whose region of support is wholly subsumed by the support
of some other axis arc deleted. The resulting smoothed
local symmetries are given a parametric description called
a frame. Finally, a shape is decomposed into sub-objects for
which smoothed local symmetry descriptions are computed
individually. The axes act as local coordinate frames and
constrain the generation of descriptions of an entire shape
by combining the descriptions of subshapes.

A pilot implementation of sinoothed local symmetries
was reported in [Brady 1982c|. It repcatedly used an algo-
rithm, based on the mean value theorem, for determining
the points at which a line entering the shape at a given
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orientation to the tangent emerges fromn the shape. In
this way the local syminetries at a point could be found
iteratively. The pilot implementation worked well, but was
very slow.

Recently Asada and Brady [1983] have developed an
alporithm that computes an approximation to the smoothed
local symninetries of a shape. First, a set of feature points
are computed on the shapes bounding contour, as found by
the Canny edge detector. The feature points are points of
high curvature or points of inflexion, and they are found
by a process analogous to edge finding but applied to
the orientation of ti:e curve (a one-dimensional function
of arclength). Features analogous to those computed for
the original primal sketch [Marr 1976] are extracted and
interpreted. Second, the shape is approximated by best
fitting straight lines and circles to the feature points found
in the first stage. Asada and Brady have worked out
the smoothed local symmetries generated by two contours
of constant curvature, and these are fit to the segments
produced in the second stage. Finally, the smoothed local
symmetries are used to match a database of shape models for
recognition and inspection. Her » and Brady have developed
a sampling algorithm for computing the smoothed local
symmetries of a shape. The main emphasis of their work is
developing algorithms for removing locally plausible axes
that are of minor significance globally.

Bagley and Brady [1983] generate claborate shape
descriptions using a hierarchy of shape models incorporat-
ing general geometric knowledge and, at a higher level,
application-specific information. These models combined
with concavities in the boundary allow isolation of sub-
shapes. They associate with each subshape a local refeence
frame to characterize the joining of subshapes and to help
choose among multiple interpretations.

The computation of shape from contour

An important goal of early vision is the computation
of a representation of the orientation of visible surfaces.
Many processes contribute to achieving this goal, stereop-
sis and structure-from-motion being the most studied in
image understanding. Threc other important contribut-
ing processes are shape-from-contour, shape-from-texture-
gradients, and shape-from-shading. Several psychophysical
demonstrations show that shape-from-contour is significantly
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inore powerful than shape-from-texture-gradients. Similarly,
Barrow and Tenenbaum {1981, Figure 1.3 fl] suggest that
shape-from-contour is a more effective clue to shape than
shape-from-shading.

Brady and Yuille have investigated the computation of
shape-fromn-contour. Many shapes are pereeived as images
of surfaces which are oriented out of the picture plane.
Slant judgements are not determined by familiarity with
contours, but on more general knowledge of shapes and
surfaces. The method proposed by Brady and Yuiile is
based on sueh general knowledge, namely a preference for
symmetric, or at least compact, surfaces. Note that the
contour does not need to be closed in order to be interpreted
as oriented out of the image plane. In general, eoutours are
interpreted as curved three-dimensional surfaces.

Brady and Yuille develop an extremum principle for
determining three-dimensional surface orientation from
a two-dimensional eontour. Initially, they work out the
extremum principle for contours that are closed and that
are assumed a priori tn be the images of planar surfaces.
They discuss how to«  .nd this approach to open contours
and how to interpret contours as eurved surfaces.

The extremum prineiple maximizes a familiar measure
of the compactness or symmetry of an oriented surface,
namely the ratio of the area to the square of the perimeter.
1t is shown that this measure is at the heart of the maxi-
muin likelihood approaeh to shape-from-contour developed
by Witkin [1981] and Davis, Janos, and Dunn [1982). The
maximum likelihood approach has had some success inter-
preting irregularly shaped objects. However, the method is
ineffective when the distribution of image tangents is not
random, as is the case, for example, when the image is a
regular shape, such as an ellipse or a parallelogram. The ex-
tremum principle interprets regular figures eorrectly. Brady
and Yuille show that the maximum likelihood method :p-
proximates the extremum principle for irregular figures; but
that the maximum likelihood method does not compute the
correct slant for an ellipse. Witkin (1981, Figure 5] provides
empirical evidence that the maximum likelihood method
computes a good approximation to the perceived tilt but
underestimates the slant. Brady and Yuille prove that the
maximum likelihood method cousistently overestimates
the slant of an ellipse. A more thorough investigation of
the difference between the Extremum Principle and the
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Maximuin Likelihood method is needed.

Kanade [1981, page 424] has suggested a method
for determining the three-dimensional orientation of skew-
symmetrie figures, under the "heuristie assumption” that
such figures are interpreted as oriented real symmetries.
Brady and Yuille prove that the extremumn principle
neeessarily interprets skew syminetries as oriented real
symmetries, thus dispensing with the need for any heuristic
assumption to that effect. Kanade shows that there is a
one-parameter family of possible orientations of a skew-
symmetric figure, forming a hyperbola in gradient space.
He suggests that the minimum slant member of the one-
parameter family is perceived. In the speeial case of a real
syminetry, Kanade’s suggestion implies that symmetric
shapes are perceived as lying in the image plane, that
is having zero slant. It is clear from the example of an
cllipse that this is not correct. Our method interprets real
syminetries correctly.

8. Object acquisition and shape from shading

Photometrie stereo as developed by Horn, Woodham
and Silver [Horn, et. al., 1978; Woodham, 1981] provides
shape and surfaee orientation from multipie images of the
same scene, taken under different conditions of incident
illumination.

Suppose two images are obtained by varying the
direction of the ineident illumination. Each picture element
in the two images corresponds to the same physical
point, since the imaging geometry rewnains unchanged.
The reflectance map is ehanged, however, and the two
values for each point can determine the surface orientation.
(Three views provide complete disambignation in all cases.)
Photometric stereo can be implemented very efliciently in
terms of a look up table set up in an initial calibration phase
in which an object of known shape is imaged under the
different lighting conditions. Recently, Ikeuchi and Horn
have applied this technique to the ~ifieult probiem of bin
picking.

One of the remaining obstacles to the widespread ap-
plication of industrial robots is their inability to deal with
parts that are not precisely positioned. Present methods for
automating assembly operations require separate feeding
of the parts, with position and attitude carefully control-
led. lkeuchi and Horn have demonstrated a system for
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automnatically directing a mechanical manipulator to pick
one objcct at a time out of a pile. The attitude of the
object to be picked up is found using a histogram of the
orientations of visible surface patclics. Surface oricntation
is determincd using photometric stereo applied to multiple
images, taken with differing lighting. The resulting needle
map, giving the orientations of surface patches, is used
to create an orientation histogram which is a discrete ap-
proximation to thc extended Gaussian image. This is then
matched against a synthetic orientation histogram obtained
from protoypical models of the objects to be manipulated.
Such models may be obtained from CAD databases.

The system uses stored models of the objects and can
identify which of several parts is seen. The output of this
process has been used to direct a mechanical arm to piek
up the part. The method is not restricted to cylindrical
parts or even solids of revolution. Extended light sources
can be used in arbitrary positions and the objects need
not be restricted to ones having particularly favourable
reflective properties. As we nentioned, the system adapts
to these two variables using a calibration object of known
shape. A sccond calibration step is needed to determine
the transformation between the coordinate system of the
manipulator and that of the camera. This type of approach
may prove very useful in practical applications. We now plan
to explore the potential advantages of coupling photometrie
stereo with Nishiahra’s stereoalgorithm discussed in Scetion
3.
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ABSTRACT

Our principal objective in this research
program 1is to obtain solutions to fundamental
prohlems in computer vision; particularly those
problems that are relevant to the development of
an automated capability for 1interpreting aerial
imagery and the production of cartographic
products.

Our plan 1s to advance the state of the art
in selected core areas such as stereo compilation,
feature extraction,
matching; also, to develop an ‘”Expert system”
control  structure which will allow a human
operator to communicate with the computer at a
problem oriented level, and guide the behavior of
the low level interpretation algorithms doing
detailed imagg*qnalygisz}

Finally, ME‘pGa; to use the DARPA/DMA Testbed
as a mechanism for transporting both our own and
IU community advances, in image interpretation and
scene analysis, to DMA, ETL, and other members of
the user community.

I INTRODUCTION

A major focus of our current work is the
construction of an Expert System for Stereo
Compilation and Feature Extraction. Our intent in
this effort is to develop a system that provides a
framework for allowing higher level knowledge to
gulde the detailed interpretation of imaged data
by autonomous scene analysis techniques. Such a
system would allow symbolic knowledge, provided by
higher level knowledge sources, to automatically
control the selection of appropriate algorithms,
adjust thelr parameters, and apply them in the
relevant portions of the image.

Recognizing the difficulty of completely
automating the interpretation process, the expert
system will be structured so that a human operatot
can provide the required high level information
when there are no reliable techniques for
automatically extracting this information from the
available imagery. As new research results become
available, the level of human interaction can be
progressively reduced.

The expert system we are building can thus be
viewed as an intelligent uservlevel interface for
gulding semiautomated image processing activities.
Such a system is envisioned as a rule-based system

linear delineation, and image ,

with a library of processes and activities, which
can be invoked to carry out specific goals in the
domain of cartographic analysis and stereo
reconstruction. The system would depend on the
human user for those types of 1information not
easily extracted from the given imagery, and allow
the computer system to take over in those areas
where the utility of automated analysis has been
clearly demonstrated.

Development of the expert system control
structure 1s a research task still in an early
stage of accomplishment. The remainder of this
report will describe progress in research
supporting the development of potential scene
analysis components of the system, as well as other
Image Understanding research of a more basic
nature. We also briefly describe the status of the
DARPA /DMA Testbed effort now approaching
completion.

Il RESEARCH PLANS AND PROGRESS

A. Development of Methods for Modeling and Using
Physical Constraints in Image Interpretation.

Our goal in this work is to develop methods
that will first allow us to produce a sketch of the
physical nature of a scene and the illumination and
imaging conditions, and next permit us to use this
physical sketch to gulde and constrain the more
detalled descriptive processes -~ such as precise
stereo mapping.

Our approach 1s to develop models of the
relationship between phvsical objects in the scene
and the intensity patterns they produce in an image
(e.g., models that allow us to classify intensity
edges in an image as either shadow, or occlusion,
or surface 1Intersection, or material boundaries in
the scene); models of the geometric constraints
induced by the projective 1imaging process (e.g.,
models that allow us to determine the location and
orientation of the camera that acquired the image,
location of the vanishing points induced by the
interaction between scene and camera, location of a
ground plane, etc.); and models of the illumination
and 1intensity transformations caused by the
atmosphere, 1light reflecting from scene surfaces,
and the film and digitization processes that result
in the computer representation of the image.

These models, when Instantiated for a given
scene, provide us with the desired "physical”
sketch. We are assembling a “constrailnt-based
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stereo system” chat can use this physical sketch to
resolve the ambiguities that defeat conventional
approaches to stereo modeling of scenes (e.g.,
urban scenes or scenes of cultural sites) for which
the images are widely separated in either space or
time, or for which there are large featureless
areas, or a significant number of occlusions.

Recent publications of our work 1in this area
are cited in the references [1-4, 9-12].

B. Stereo Compilation: Image Matching and

Interpolation

We are implementing a complete state-of-the-
art stereo system that produces dense range images
from given pairs of intensity images. We plan to
use this system both as a framework for our stereo
research, and as the base component of our planned
expert system.

There are five components of this stereo
system: a rectifier, a sparse matcher, a dense
matcher, an interpolator, and a projective display
module. The rectifier estimates the parameters and
distortions asscciated with the imaging process,
the photographic process, and the digitization.
These parameters are used to map digitized image
coordinates onto an ideal image plane. The sparse
matcher performs two~dimensional searches to find
several matching points in the two images, which it
uses to compute a relative camera model. The dense
matcher tries to match as many points as possible
in the two images. It uses the relative camera
model to constrain the searches to one dimension,
along epipolar 1lines. The interpolator computes a
grid of range values by interpolating between the
matches found by the dense matcher. The projective
display module allows interactive examination of
the computed 3-D model by generating 2-D projective
views of the model from arbi: arily selected
locations in  space. Initial versions of all
components of the syvstem have been implemented.

Present tresearch in this =:cask 1is focused
primarily on the image correspordence (matching)
and interpolation problems. With respect to image
matching, the follewing major issues ate being
addressed:

* What is a correct match?

* How does one measure the performance of a
matcher?

* What causes existing matching techniques to
fail?

* How can one improve the performance of
matching techniques?

Since there are no reliable analysis
techniques for evaluating the performance of
matching algorithms when applied to treal world
images, we must evaluate them by extensive testing.
To expedite such testing, a database of images and
ideal match data (ground truth) is being assembled.
For examrle, we have acquired data from the ETL
Phoenix test site that were produced specifically
for testing matching techniques. Every point in
the database we are constructing contains
annotations that indicate the categories of
matching ptoblems for that point, and other
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information that might be useful to evaluate the
performance or guide the application of matching
techniques.

We are currently investigating a bypothesize -
verify approach to local match.ng. Potential
matches are verified by examining the image for
compliance with the assumptions of the matching
operator”s model. For example, area correlation
matching operators assume that correctly registered
image patches will differ only by Gaussian noise.
A simple verification technique is to examine the
statistics of the point-by-point difference between
the hypothesized alignment of the patches for
conformance with that model. 1Image anomalies, such
as moving objects or ocecluding contours, will
typically produce a difference image that has a
highly structured geometry, indicating the shape
and location of the anomaly. Such anomalous areas
can be removed from the region over which the
correlation is computed, and the process iterates
until either an acceptable match rcriterion 1is
satisfied, or too many points are removed from the
region.

Ir many cases (e.g., occlusion and featureless
areas) local matching techniques are not capable of
producing the required correspondences over regions
of significant extent. We intend to wuse the
information provided by the "physical sketch" (see
previous section) to detect such situations, and to
select alternative means for obtaining the required
depth informatior.

As Indicated above, when a stereo pair of
images are matched, we generally can do no better
than to compute a sparse depth map of the imaged
scene. However, for many tasis a sparse depth map
1s 1inadequate. We want a complete model that
accurately portrays the scene”s surfaces. To
achieve this goal, we must be able to obtain the
missing surface shape information from the shading
of the images of the stereo pair.

To understand the relationship between image
shading and surface shape, we built a differential
mod21 [10,11] that relates shape and shading but,
unfortunately, does not provide a complete basis
tor a shape recovery algorithm [12]. However, the
information available in image shading does allow
the building of a surface interpolation algorithm
that finds 2 surface that is consistent with the

image shading. We are proceeding with such a
development.
As image shading alone does not provide

sufficient information to find surface orientation,
further shape information sources in the image are
needed. We are evaluating additional scene
attributes that encode shape information in their
image, and the models necessary to recover the
corresponding shape information.

C. Feature Extraction: Scene
Partitioning, and Labeling

Description,

Our current research in this area addresses
two related problems: (1) representing natural
shapes such as mountains, vegetation, and clouds,
and (2) computing such descriptions from image
data. The first step towards solving these
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problems 1s to obtain a model of natural surface
shapes.

A model of natural surfaces is extremely
important because we face problems that seem
impossible to address with standard descriptive
computer vision techniques. How, for 1instance,
should we describe the shape of leaves on a tree?
Or grass? Or clouds? When we attempt to describe
such common, natural shapes using standard shape~
primitive representations, the r-sult is an
unrealistically complicated model of some thing
that, viewed introspectively, seems very simple.
Furthermore, how can we extract 2-D information
from the image of a textured surface when we have
no models that describe natural surfaces and how
they evidence themselves in the image? The lack of
such a 3-D model has restricted image texture
descriptions to being ad hoc statistical measures
of the image intensity surface.

Fractal functions, a novel class of naturally-
arising functions, are a good choice for modeling
natural surfaces because many basic physical
processes (e.g., erosion and aggregation) produce a
fractal surface shape, and because fractals are
widely wused as a graphics tool for generating
natural-looking shapes. Additionally, we have
recently conducted a survey of natural imaga2ry and
found that a fractal model of imaged 3-D surfaces
furnishes an accurate description of both textured
and shaded image regions, thus providing validation
of this physics—-derived model for both image
texture and shading.

Encouraging progress relevant to computing 3-D
information from imaged data has already been
achieved by wuse of the fractal model. We have
derived a test to determine whether or not the
fractal model is valid for particular image data,
developed an empirical method for computing surface
roughness from image dsta, and made substantial
progress in the areas of shape-from-texture and
texture segmentation. Characterization of image
texture by means of a fractal surface model has
also shed considerable 1light on the physical basis
for several of the texture partitioning techniques
currently in use, aud made it possible to describe
image texture in a manner that is stable over
transformations of scale and 1linear transforms of
intensity.

The computation of a 3-D fractal-based
representation from actual image data has been
demnonstrated. This work has shown the potential of
a fractal-based representation for efficiently
computing good 3-D representations for a variety of
natural shapes, including such seemingly difficult
cases as mountains, vegetation, and clouds.

This research is expected to contribute to the
development of (1) a computational theory of vision
applicable to natural surface shapes, (2) compact
representations of shape useful for natural
surfaces, and (3) real-time regeneration and
display of natural scenes. We also anticipate
adding significantly to our understanding of the
way humans perceive natural scenes.

Details of this work can be found in Pentland

[8].
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D. Linear Delineation and Partitioning

A basic problem in machine vision research is
how to produce a 1line sketch that adequately
captures the semantic information present in an
image. (For example, maps are stylized line
sketches that depict restricted types of scene
information.) Before we can hope to attack the
problem of semantic interpretation, we must solve
some open problems concerned with direct perception
of line-like structure in an image and with
decomposing complex networks of line-like
structures into their primitive (coherent)
components. Both of these problems have important
practical as well as theoretical implications.

For example, the roads, rivers, and rail-lines
In aerial images have a 1line-like appearance.
Methods for detecting such structures must be
general enough to deal with the wide variety of
shapes they can assume in an image as thev traverse
natural terrain.

Most approaches to object recognition depend
on using the information encoded in the geometric
shape of the contours of the objects. When objects
occlude or touch one another, decomposition of the
merged contours is a critical step in
interpretation.

We have recently made significant progress in
both the delineation and the partitioning problems.
Our work 1in delineation [5] 1is based on the
discovery of a new perceptual primitive that is
highly effective in locating line-like (as opposed
to edge-like) structure.

Our work on decomposing linear structures into
coherent components [6] is based on the formulation
of two general principles that appear to have
applicability over a wide range of problems in
machine perception. The first of these principles
asserts that perceptual decisions wmust be stable
under at 1least small perturbations of both the
imaging conditions and the decision algorithm
parameters. The second principle is the assertion
that perception 1is an explanatory process:
acceptable precepts must be associated with
explanations that are both complete (i.e., they
explain all the data) and believable (i.e., they
are both concise and of limited complexity).

These new delineation and partitioning
algorithms have produced excellent results in
experimental tests on real data [5,6].

ITI  STATUS OF THE DARPA/DMA
IMAGE UNDERSTANDING TESTBED

The DARPA/DMA TImage Understanding Testbed
established at SRT as part of the DARPA Image
Understanding research program constitutes a
coherent body of software running in a standard
hardware environment. Demonstrations of the
features and capabilities of all IU community
contributed software are available; detailed
evaluations have been carried out for selected
modules (e.g., see the paper by K. Laws [7] in
these proreedings). In this capacity, the Testbed
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Abstract

Rescarch on intelligent systems for image understanding focusses
on a successor to the ACRONYM system, and its applicationin a
rule-based sterco mapping and interpretation systemn. Soinc cle-
ments of a rule-based sterco system have been implemented. A
new modeling system is under construction, and a new graphics
system for display of generalized cylinders has achieved initial
results.  Rescarch has continued on segmientation/aggregalion
in the figure-ground problemn for grouping candidate objects.
Implementation experimeuts are underway for an array of vi-
sion processors. Fundamental mathematical results have been
obtained on matching processes, Inference rutes for interpreting
surlaces from images were demonstrated formally in a mathe-
matical logic programming system. Results have been obtained
in specializing certain vision programs by aulomatic methods to
produce cltlicient prograrns.

The objectives of this research are to develop algorithnns for
high performance image understanding modules, to hmplement
an inlelligent vision system, and to demonstrate its application
in photointerpretation and cartography. The ACRONYM sys-
tem was developed as the lirst intelligent system. Rescarch has

shilted to its SUCCESSOR.

A rule-based stereo mapping system is under construction.
Various members ol the group have built elements for a
demonstration deseribed in [Baker 83]. "This work was supported
in part by RADC. These include: an evaluation of enlland’s
shape from shading program; an extended version of Baker’s pro-
gram whiclr includes edges I'rom [Mariimont 82]; a sterco registra-
tion and reetificalion program by Metler; generie building models
and typical building examples by Gray; sterco matching ol or-
tlrogonal trihedral vertices by Malik and Binford; monocular and
stereo inlerence rules by Malik and 1hntord; example rules for a
rule-based sterco system.

Miller and Lowry have contimied progress loward building a
small array of inage processors [Lowry 82]. Other work has
begun in the architecture ol atgorithms for image understanding,

Cowan has begun implementation of a new modeling system for
SUCCESSOR. Rublee and Sclker have investigated the user in-
terlace for an intelligent geometric editor. Chelberg lras inves-
tigated the constraint system and rule base of ACRONYM, using
a large set, of aircraft models. Minor problems were identilied
and lixed. e s investigating more powerful mechanisms for
the constraint systemn. bLowry has done initial work in prob-
lem forimilation Tor a class of commputational geometry problems.
[Scott 83] lras implemented a gencral system for calculating the
terminators (visible boundaries ol enrved surlaces) for a broad
class of generalized cylinder models.  “I'he algorithm, eapable
ol parallel inplementation, ealcutates the perspectlive image ol
a Gareralised Cylinder, from arbitrary viewpoint, with hidden
surlace removal. It applies to a wide class ol eylinders. The fime
taken will be proportional Lo the total length of the conlours,
independent of the number ol edges. The algorithm solves for
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one closed-loop conlour-generator at a time, testing ils contour
(in the image plane) lor inlersection with visible segements of
previous contours,

[Lowe 83] have extended the analysis of the figure/ground prob-
lem, which we fornmlate as the discovery of non-random struc-
ture in images, whether interpreted as surfaces in three space,
or as patterns and textiure in the plane. Uniform, non-randoin
structure has an interpretation of common phyiscal origin,
Martinont has worked at flinding edges in intensity surfaces. Asa
shbproblem of segmenting intensity snrlaces, he has investigated
segmenting enrves. Resnlts have been obtained Tor the problem
of deterimining a simooth curve through two samples, cach with
point, tangent veetor, and curvature.

(Blicher 83] lias developed some Tundamental mathematical
theory underlying vision. lle dcfines a mathematical structure
which ean be used as a framework for studying many vision prob-
lenis. Drawing on dillerential topology, he uses the framework
to prove a theorem regarding the slereo matehing problem. The
main result is that without constraints on imaging geometry,
nialehing of typieal pictures requires at least 2 color dimensions
for uniqueness. te also presents some theory about the topology
of iso-brightiress contour lines, wlhich is uselnl in winderstand-
ing the beliavior of systems whicl track some value, c.g. zcro-
crossings. The paper provides vision researchers with a view ol
somne of the powerfnl results of modern differential topology; the
methods used are applicable to sterco, motion stereo, optic low,
and matehing,

[Ketonen 83] is invesligating ways of formally expressing facts
about images. In partienlar, he can show that some of the
coincidence assumptions stated in [Binford 81] cau actually be
proved in a suitable formal I'ramework.

[Goad 33] deseribes the antomulic generation of special purpose
vision programs. The starting point lor the antomatic construe-
tion process is a description ol a particular 3D object. The result
is a special purpose program for recognizing and locating that
object in images, without restriction on the orienlation of the
object in space. Thus cach object description is analyzed in ad-
vance, and then “compiled” inlo an efficient program for detect-
ing Llat, object in images. The method has been implemented
and tested on a variely of images with good resulls, Somne of
the tests involved images inm which the larget objects appear in a
jumbled pile. The current implermentation is not fully oplimized
for speed. However, evidencee is given that intage analysis times
on the order of a second or less can be obtained for typical in-
dustrial recoguition tasks. (This time estimate excludes edge
finding).

Perceptnual Organization

We have a practical objective which is to implement more general
interpretation in ACRONYM. A shorl Lerm goal is an improved
ribbon linder, coupled with a meelianisn Tor making canonical
clusters ol ribbons. ACRONYM malches predicted ribbons or
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is now established as a technology transfer tool
that can be utilized by appropriate agencies to
evaluate the applicability of the contributed scene
analysis techniques.

Documentat on of the Testbhed 1is entering its
final phase. Final drafts of the User”s manual,
the Programmer”s manual, and the System Manager”s
manual are available and will soon pass through the
required editing and approval procedures. Drafts
of the evaluation reports for the Ghough and
Phoenix programs are also complete. We are
currently completing both the evaluation report for
the Relaxation package and the user-level
documentation of those contributions for which no
detailed evaluation is planned. More extensive
studies of the wvarious approaches to stereo
compilation now available on the Testbed will be
integrated into the ongoing research effort on the
stereo problem.

The Testbed is now sufficiently well-defined
that exact coples of the entire system can be
configured, 1if desired. SRI, wunder a separate
contract, is just completing the installation of a
Testbed copy (hardware and software) at the US Army
Engineer Topographic Laboratories (ETL) at Fort
Belvoir. A Lisp Machine will be added to the ETL
coniiguration later in the year. SRI will also be
supplying Lisp Machines and Lisp Machine software
to the DMAHTC and DMAAC branches of the De fense
Mapping Agency. SRI has been closely involved in
efforts to ensure that the upgrade of the DMA
AFES/RWPF facilities to the VAX-11/780 CPU can
incorporate the Image Understanding Testbed
capabilities, as well as supporting the Lisp
Machines.

The Testbed software system and its utilities
are being prepared for export to wuniversity
researchers in the IU program as well as to other
U.S. Government agencies interested in
establishing Testbed copies. SRI has developed a
simple license agreement to help protect Testbed
contributors and restrict use of the software to
appropriate academic and govei ent research
environments.
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cllipses with obscrved ribbons or cllipses; then it tests whether
clusters of image clements satisly object constraints in three
space. Typically, matching single ribhons is weak, while match-
ing alt pairs, triples, and n-tupies of ribbons is combinatorially
unattraclive. Limiling the combinatorics teads to introducing
proximity grouping, then to n thorough investigation ol grouping
mechanisins Irom lirst principles.

We have studicd Tundamental properties of perceptual organiza-
tion. The bottoni-up process of grouping related image features
plays an important role in 3-1 inlerence, model-based recogni-
tion, and matching processes such as stereo correspondance, We
measure the signilicance ¢i inage relations as inversely propor-
tional to the probability that they would have arisen by accident
from the surrounding distribution ol features. This is a general
measure that requires no prior knowledge of the scene, and can
therclore be applied unilormly at the earliost stages ol the iinage
interpretation process.

Because the image relations are likely to have arisen from
properlies ol the scone rather than through an accideut, of image
formation, they provide a reliable basis lor matehing against
models, ACRONYM currently relies on ribbons and clipses as
its perceptual desceription of an image, but this set could be ox-
panded to include all relinbly detectable relations. Typically
refations which are non-accidental will be gqnasi-invariant with
respect bo viewpoint.  This means thal these relations can be
used for stereo correspondance matching, at a higher and more
robust level than simple edge points.

We have also studied the complexity ol Lhe process of lorming
image relations, H would be corbinatorially expensive Lo ex-
amine all possible relations hetween image features, Therclore,
we have nsed diameter-Tmited grouping processes applied at mul-
biple scales and overlapping locations. At any scale, the niinber
ol allernadives Tor Torming relations nust be low, or none will be
attempted. In this way, computation is limited by complexity
rather than by prior limits on scale or density. Some of this work
i5 the basis for estimates concerning architeeture of interniediate-
level vision.

We have currently implemented a curve deseription program
which looks for non-accidental linear or curvilinear structure in
edge data. This program is able to delect, signilicant structure
occuring at multiple scales in the same edge. 1t requires no prior
knowledge ol the noise properties in an edge, but uses the given
data to estimate the scales al which the eurve exhibits the most
signilicant structure,

Stereo Vision

Baker has odified the sterco system to include cdges from
[Marimonl 82]. The system now uses improved edge operators
and includes adge extent in secking optimal correspondence. The
system now deiis with stereo pairs in which epipolar lines are not
coincident wiih the camera raster. To bring this about, Meller
made a prograin to determine epipolar lines from the camera
transform data of [Gennery 77]. To perform the interpolation of
surfaces based on intensily interpolation, Meller’s program was
made to produce images rectified to cpipolar geometry.

A system was developed for input of hand-segmented images as
a basis for developing higher level inference and correspondence
functions independent of the development of segimentation algo-
rithms,

Orlhogonat trihedral verlices (OTVs) are an important strue-
tural clement in buildings. O7TVs were analysed in part by
[Licbes 81]. Malik and Binford provided an anxlysis for genceral
oricntation in perspective. The analysis was implemented as
an inequality to tesl candidate OTVs; alt O'I'Vs and some non-
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OTVs are accepted by the inequality. An algorithm deterntines
the angle in space from a single image. Clearly, corresponding
views of an OTV must imply the same orientation in space.

Malik and Binford have determined new monocular inference
rules which have applicability to sterco, including a generalized
support interpretation. They have produced a stereo inference
rufe which imposes a sign reversal constraint on pairs of vectors,
IF two finages of a pair ol veclors are to correspond, the z-
component of their eross product (determined entirely by image
quantities) must not change sigi.

Segmentation and Representation of Curves

We have developed an atgorithin to compute a seginentation and
representation of digital curves, applicable lo «dges extracted
Irom images, intended to acilitate higher-level analysis of curves.
A number ol psychologieal and mathenatical donsiderations have
led us to segment curves at extrema and zeroes ol ostimated
curvature,  Psychological data suggest that humans segment
curves at extrema, and that lnonnans are insensitive Lo deriva-
tives ol order higher than two (curvature is closely related to
the sccond derivative). Purllier, zeroes and extrema of curva-
ture have mathematieal propertios of invarianee under eertain
geomelbric transformations which cnable reliable estimation of
curvatiure characteristics independent of the curve’s position and
orientation. A related conjecture currently being investigated is
whether suitably chosen invarianis ol space curves map stably
under perspeetive projection into extrema and zeroes of curva-
bure ol the image plane curve.

We estimate curvature at all scales, and a pyramid of curvature
estiinates is constructed suitable for delection and representation
ol'linear and hicrarchical relationships among the estimates. We
usc this pyramid to cvaluate robustly the significance of of cur-
vature changes at once scale in the context ol others; we thereby
climinate the need l'or extensive prior knowledge of sensor noise,
for instance. Estimales of significanl curvature changes arc
retained at all seates, so tasks needing only reugh estimates are
not computationslly overburdened by unnccessary delail, while
those able to use high accuracy effectively achieve optimal per-
lformance.

Splines for Vision

We have completed a preliminary implementation of a new type
ol spline bascd on intrinsic, geometric properties of curves. We
argued above that digital cr.irves should be segmented af, extrema
and zcrocs of curvature. This new spline takes as input two
points, two tangents, and two curvatures, and returns a curve
which is: in agrcement with the input data at the two points;
contintuous; contiituous in tangent; continuous in curvature, with
curvature varying monotonically along the curve. Curvatures at
the endpoints cannot be of different signs, although onc ean be
zero and oue nonzero. If our curvature cstimates are consistent
with the assminption that enrvature is continuous, this restriction
poscs no problem, since placing knots at all zeroes and extrema of
curvature implies that no two adjacent knots can have curvatures
of opposite sign (il they did, there would be a zero of curvature
between them, and therefore a knot).

Curvature must change monotonically between knots to avoid
introducing spurious enrvature extrema, i.e. extrema not present
in the curve underlying our curvature estimates. I the cur-
valures at the two points to be splined are ky and kg, with
ki less than kg, then the statement thab curvature inereases
monotonically betwee &y and kg is mathematically equivalent to
the statement that there exist no curvature extrema hetween k)
and ko (assuming curvature is continuous). Since the perceptual




and mathematical tnportance ol curvature exbrema dictated the
placement of knots at them, il is crucial thal the spline intro-
duce no curvature extrema not present in Lhe data. tn recogni-
tion ol the importance ol this characleristic, we reler Lo these
splines as monolone curvature splines. The eurrent impleinen-
Lakion relies on the relationship hetween evolutes and involutes,
a construel Trom elassieal differential geometry, The spline it-
selftis the involule, deterniined by a Lrivial ealenlation from the
evolute; finding the evolute is the compubationally hard part.
The evolnte is not determined uniquely Iromn the inpul data, We
have chosen Lo use Tour circutar ares, primarly lor the sake of
computational clficiency; the resulting evolute is contlinuous, and
conlinuons in Langent, but not in curvature. It is a fortuitous
aspect of the relationship between evolutes and involnles that
Lhe invohile's curvature is continous. An iteralive procedure is
used to lind the evolute; it converges in Lesl eases salisfactorily
and rapidly, although more lesting needs to be done.

Prediction of Generalized Cylinders

This is the first stage of a systein for manipulating generatized
cylinder wodels. 1t includes a generalization ol the Tormnlation
of [Shafer 82] for the prediction ol the terminator For gencralized
cylinders. The algorithm ean be divided into two parts. [first
(A), selntion Tor the visible parts of Lhe contonr-generators, and
secondly (B), region growirg to gel visible surlaces. The first part
is the principal one. 11 has two subparts, which are repeated, and
logether lind one contour-generator, Fach contour-gencrator is a
closed loop, interseeting no others, which divides Lhe surface into
forward (visible if unocctuded), and backward facing (iuvisible)
arcas. The square roul, of the size of each visible area, is a
measure of the length scale over which things are happening in
that region of the GC.

The first subpart (A1), steps over the GC with step length
proportional to the square reol ol Lhe arca of the region it is
contained by, until cither the whole surlace has been covered,
in which case the algorithm stops; or a slep containing a new
contour-generator is found. In this ease, the step is then bisected
down to an exact solution. A test lo sce whether each step
jmups a new conlour-generalor ean be miude since, whenever
the direction (forward or back), that a surlace poiut is facing,
differs Trom the direction predicted by the regions of Lhe existing
contour-generators, then there must be an undiscovered contonr-
generator passing nearby. This means Lthat if one stepping point
has the sane predicted, and actoal surface direction, and the
next does not, then a new conlour generntor passes through the
intervening step. This interval is reduced, vsing bisection, with
the condilion that one end of the interval st have the same
predicted, and real surtace dircelons, while the other end must
not.

The solntion is handed over to the second subpart (A2), which
propagates it around Lthe whole centour-gencrator, back to ils
start, making a fist of the solulions as it goes, and noting the
ones where Lhe contour-generalor hecomes visible or occluded. Tt
works by stepping along Lhe contour-generator tangent 2, Lo get
a guess for the next solution poink, which is Newlon-Raplison
ilerated to a suflicient acenrncy. I the Newion-Raphson does
uol converge, several points aronnd a small circle are tested
lo find an interval Lo bisecl down to the next solution. The
step length s taken proporlional to curvalnre ol the contonr, to
get nnilorm iuterpoliation accuracy between the known contour
poiutsd, 1. llach step is projected to the hmage, and checked lor
intersection with Lhose previously projected sleps, which have
not been shown Lo be hidden. When an intersection is found, the
exacl posilions of Lhe ocelnding and occtuded contour-generalor
points arc caleulaled8,  Finally the whole contour is checked
against possible snrrounding contlonrs,
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To convert. Lo a Torm implenientable in parallel; step Al is done
independently, ab dilferenl places and then A2 is nsed Lo Torm
contour- generalor segments, which can be simply joined up into
the complete contour lists. iSither way, each list of contour points
is now followed down, keeping connt of the marked occeluded
points, Lo produce hists ol just the visible ones.

purpose vision programs

Chris Goad's work concerns the autoinatic gencration ol special
purpose vision programs.

In many praciieal applications ol automated vision, the vision
task takes e Torm ol recognizing and locating a partienlar three
dimensional object in a digitized image. The exact shape of the
object to be perceived is known i advance; the pnrpose of the
acl of perception is only Lo determine ils position and oricutation
relative to the viewer. This is morel based vision in its strict
form. Most industrial applications of vision have this property,
and also the property Lhal the same object (or, more precisely,
objects of Lhe same shape), must be located in many images.

Goad's werk concerns a schieme for exploiting this kind ol situa-
tion which involves antomatically -constructing special purpose
vision programs. The starting point lor the antomatic construc-
tion process is a description of a particutar 3D object. The result
is a special purpose program for recognizing and locating that
object in images, without restriclion on the orienlation ol the
object in space. Since this special purpose program has a com-
paratively limited task to perforin, it ~2n be mnch faster than
any general purpose vision prograni voutd be. Thus each ob-
jeet nodel is analyzed in advance, :nd th n “compited” inlo
an cllicient program for delecting thit object in images. The
method has been implemented and tested on a variety ol images
with good results. Sonie of the tests involved timages in which the
target objeets appear in a juinbled pile. The current inplemen-
talinn is not I'ully optimized for speed. Ilowever, cvidence is
given thal image analysis times on the order of a secoud or less
can be obtained for typical “ndustrial recognilion tasks. (This
time estimate excludes edge finding).

Mathematical Analysis

from the camera transform dala ol [Gennery 77]. To perform the
inkerpolation models. 1t includes a generalization of the formula-
tion of [Shafer 82§ [Ketonen 83] has implenented a lorinal repre-
sentation of geometry in the 10K, systerm. e has demonstraled
that some of the coincidence assuniplions staled in [Binford 81]
can actually be proved in a suitable Tormal framework.

It follows from his analysis thal niany of the "impossible” pic-
tures of Huffman in [2] can be detected by simpler and more
general means than the ones used by uffman, Clowes or Waltz,
Given that these methods are simpler (even if nol complete),
they may be closer Lo the process aclually used by the human
visual system.

One should not expect formalisations of theories Lo have tan-
gible councetions with succesful implementations ol algorithms;
Arlifieial Intelligence prograne need not be based on the
paradigm of theoremn proving., llowever, the clarification of the
formal concepls underlying these systems can be of greal impor-
tance in terms of program architecture and lurther development.

In Blicher’s work, a unifying abstract mathematical structure
is presented for a nuinber ol vision problems, notably stereo,
motion stereo, optic low, and malehing. The shencture is snn-
marized in Fig. (*) ol Blicher’s paper; he delines the various
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PRINCIPAL INVESTIGATORS' REPORT ON CONTRACT DAAG53-76-C-0138,

"UNDERSTANDING OBJECTS,

FEATURES, AND BACKGROUNDS'",

AND CONTRACT DAAK70-83-K-0018, "AUTONOMOUS VEHICLE NAVIGATION"

Azriel Rosenfeld
Larry S. Davis

Center for Automation Research
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College Park, MD 20742

ABSTRACT

This report summarizes the work done during
the final two years of Contract DAAG53-76-C-0138,
"Understanding Objects, Features, and Backgrounds."
It also outlines plans for work to be conducted
during the coming three years on Contract DAAK70-
83-K-0018, "Aatonomous Vehicle Navigation."

1. UNDERSTANDING OBJECTS, FEATURES, AND
BACKGROUNDS

1.1. Introduction

In June 1976 the U.S. Army Night Vision and
Electro-Optics Laboratory awarded Contract DAAG-
53-76-C-0138 to the University of Maryland for
research on "Algorithms and Hardware Technology
for Image Recognition." Funding for this con-
tract was derived primarily from the Defense
Advanced Research Projucts Agency under DARPA
Order 3206. During the following 2l-month period,
the University developed and tested advanced al-
gorithms for detection of tactical targets on
Forward-Looking InfraRed (FLIR) imagery. Concur-
rently, on a subcontract, the Westinghouse Defense
Systems Division designed charge-coupled device
(CCD) layouts for implementing many of these algo-
rithms in hardware, and also fabricated a CCD chip
that implemented one basic algorithm, histogram-
ming/sorting. The results of the work done during
the first 21 months of the contract are documented
in detail in a Final Report dated March 10978 [Al].

In April 1978 the contract was extended for a
two-year period, under the new title "Image Under-
standing Using Overlays." During this phase of
the project, numerous algorithms were developed
and tested for object detection and extraction from
images, as well as for image and region represen-
tation, On a subcontract, Westinghouse investi-
gated the implementation of some of these algori-
thms in general- or special-purpose digital hard-
ware. Westinghouse also conducted tests of one
class of algorithms known as '"relaxation'" tech-
niques. The results of the work done during this
period are documented in a series of technical and
semiannual reports, are are summarized in a Final
Report dated May 1980 [A2].

In May 1980 the contract was extended for a
final two-year period (later extended, at no addi-
tional cost, through December 1982), under the
title "Understanding Objects, Features, and Back-
grounds." During this phase of the project, fur-
ther studies were conducted, in collaboration with
Westinghouse, on object segmentation and recogni-
tion, feature extraction and background analysis,
multi-resolution image processing techniques, and
analysis of time varying imagery. This work was
documented in a series of project status reperts
[B1-3] and Technical Reports [C1-32], and is sum-—
marized in this Final Report.

Principal Investigators on this project at
the University of Maryland were Profs. Azriel
Rosenfeld and Larry S. Davis, and at Westinghouse,
Dr. Glenn E. Tisdale and Mr. Bruce J. Schachter.
The project monitor at NVEOL is Dr. George R. Jones.

1.2. Object segmentation and recognition

a) Comparative segmentation study

A comparative study of object extraction
techniques applicable to FLIR imagery was
conducted jointly by Maryland and Westing-
house, using a database of 52 images collected
by Westinghouse from Army, Navy, and Air Force
sources. Techniques tested by Maryland in-
cluded two variations of a relaxation method
as well as new methods based on multiresolu-
tion image representations, known as ''pyra-
mids." One of the pyramid-based methods out-
performed all the other techniques tested.

The results of the Maryland study are docu-
mented in detail in a technical report [Cl9],
while Westinghouse's study is documented in
a Westinghouse report.

b) New segmentation techniques

As a supplement to the main segmentation
study, several new segmentation techniques
were developed under the project. Two methods
developed on earlier projects were extended
from single-band to mnltiband imagery. One
of these improves the detectability of clus-
ters in a histogram or scatterplot by sup-
pressing pixels that lie on edges [Cl]. The
other, known as "Superspike," converts the
peaks in a histogram or scatterplot into sharp




spaces and mappings presenl in performing malhing, and their
relatiouships and properties. This is done in a Iairly absteact
way, so as Lo be applicable to many dilferent. types ol vision
problein. Ifor example, the same formalisim deseribes perspeclive
as well as orthogonal projection, nnusual ¢camera geoinetrics, and
projection onto a planc or a sphere, ete. Blicher believes that this
type ol language can eventually be converted into a compnter
langunage lor deseribing a compitational environment for vision,

Ideas from modern dilferential topology are presented and ap-
plied to the general matching problein, a common approach to
stereo matehing, delined as lollows. Given 2 picture functions
Pty o ME = R™ one Tinds regions K, Ko C M2 and a 1-1
wmatching lunction g ¢ Ky — Ky such that £ = Fyog.. Blicher
proves a “2-color theorem”. that generically Tor monochrome
pictures (n = I} there is a large infinily ol solntions, but lor 2 or
more colors (n > 2) the sohition is unique. In the monochrome
case, Lhe solutions can be «uite dilferent, malching the same
point to widely separated target points. “I'hough the Lheorem
literally deals with matching grey levels, it is equally valid for
a derived function, sueh as Lhe output of a laleral inhibition
operator, a smoother, or an edge lilter, althongh only areas lack-
ing occlusion are eonsidered.

“Generie” is a central concept in differential topology, which
means “almost always” in a precise way, atlowing once to exclude
pathologieal or nnlikely behaviors which cannot be encountered
in practice, Lhns making many probleins tractable. This can find
application as well in inlerring structure [rom images.

The prool ol the theoren: for the monochrome ense is based
on a very simple intuilive argnment involving sliding iso-
brightness contours along themselves. Independently ol proving
the theoren, lo llesh out the intnition, Blicher presents some
[acts about how sneh eontour lines can look. Although no use
is ade of it in Lthe paper, such inforination in itscll is use-
Tul Tor matehing, as topological stencture is invariant lor small
pertirrbations, hence it is iimportant to classily the possibilities
inlo a small discrete set. Also, this theory is useful for under-
standing any real-valued fanelion on a picture, for example the
zero-crossings of an edge finder, or the values of some curvature
parameter, say Gaussian curvature, or cven some loeal Fourier
cocllicient, as one might use lor a texture system.

cquation-free sentence:

Ideas from modern dilfereuntial topology are presented and ap-
plied to the general matching problem, a common approach to
sterco malching, delined as lollows.

Given 2 pictnure Munctions, onc finds 2 regions and a 1-1
matching function between them snch that the match-
ing function preserves grey level values.
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spikes (thus making them trivially detectable)
by a process of iterated local averaging in
which the histogram is used as a guide 1.
selecting those neighbors with which a given
pixel should be averaged [C26]. A third
method, "bimean clustering," identifies the
two "best'" subpopulations in a histogram by
finding the pair of values that gives a best
fit to the histogram in the least squares
sense [C20].

¢) Object identification using constraint

filtering

The conventional approach to recognizing
targets in FLIR imagery is to extract poten-
tial target regions using segmentation tech-
niques, and then carefully analyze the proper-
ties of each region independently in order to
determine whether or not it could be a target.
We have investigated a complementary approach
based on comparisons among regions rather
than analysis of individual regions. After
the image is segmented, we give each region
a set of possible labels - e.g., "sky,"
"ground," "smoke," "tree," "tank." We then
attempt to eliminate labels from the regions
based on their relationships with other re-
gions (relative property values, relative
positions, etc.). This method performed
successfully in a small set of tests; it eli-
minated the "tank" label from all the non-
tank regions but kept it for all the tank
regions [C25]. This approach should be of
interest as a supplement to existing target
recognition algorithms.

Feature extraction and background analysis

a) Edge and corner extraction

Feature detection {e.2., edge detection)
is an important acjunct to object recognition,
and also plays an ﬁmportant role in image
matching (e.g., fc§ object tracking and time-
varying imagery analysis). Three feature
detection studies wkre conducted on this pro-
ject. The optimal approach to edge detection
developed by Hueckel, which finds the best-—
fitting step function to a given image neigh-
borhvod, was applied to derive optimal edge
operators for a class of small neighborhoods
[C28]. A basic new method of evaluating edge
detector output, based on consistency of the
edge output data, was developed and success—
fully tested [C8]. A simplified method of
corner detection was developed based on de-
tecting discontinuities in one-dimensional
projections of the image; this method elimi-
nates the need to apply computationally ex-
pensive higher-order derivative operators at
every point of the image [Cl3].

b) Blob and ribbon extraction

Work was also done on the detection of
higher-level features such as "blobs" and
"ribbons" in an image. (A blob is surrounded
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by consistently facing edges, while a ribbon
is characterized by "antiparallel,'" oppositely
facing edges.) [Ldge linking schemes were
developed for detecting such features based

on compatibility of the edges with respect to
both geometry and gray level [C2]. Quantita-
tive measures for edge compatibility were also
developed for assessing both closedness [C3]
and antiparallelness [C4].

c) Texture analysis

In connection with image background charac-
terization, two texture analysis studies were
conducted. An approach to texture analysis
based on average strength of match with vari-
ous local patterns was implemented; it was
found to perform better than several standard
methods [C18]. The idea of applying texture
measures to arrays of terrain elevation
data was also briefly explored; if such
data were available at sufficient reso-
lution, it would provide a useful supple-
ment to intensity-based texture analvsis
[C15].

Multi-resolution image analysis

a) Background and related work

A potentially powerful new approach to
image analysis, now under development at our
laboratory, is based on the use of a "pyra-
mid" of successively reduced-resolution ver-
sions of the given image. Initial work on
image segmentation using pyramids was done
under NSF sponsorship. During the summer
of 1982, a workshop on "Multiresolution
Image Processing and Analysis" was held,
also under NSF sponsorship, at which about
25 research groups presented recent results
that make use of multiresolution image rep-
resentations in various ways. The pyramid
image representation also bas the advantage
of compatibility with the quadtree region
representation, which was extensively studied
during an earlier phase of this project, and
which is being further studied in connection
with cartographic data base applications
under the sponsorship of the U.S. Army En-
gineer Topographic Laboratory.

b) Segmentation and representation

One way of using the pyramid representation
segmentation is to define links between pixels
and their "parents" at consecutive levels of
the pyramid, tased on mutual similarity: this
gives rise to subtrees of the pyramid, and
thus defines a partition of the image, where
each part consists of the pixels that are
the leaves of a given subtree. A number of
variations on this busic approach were investi-
gated [C6], and it was also generalized to
multispectral imagery [Cl1]. In connection
with quadtree region representation, earlier
work on the generation of an image row by row
from its quadtree was extended to include
several new algorithms {C7].
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<) Feature extraction and encoding

Pyramids can also be used to extract and
represent features such as edges and blobs
in an image., If we use mutual similarity
as a basic for linking "edgels," rather than
pixels, in a pyramid representation, we ob-
tain "trees" of edges which allow us to de-
tect the major edges in an image, at the
higher levels of the pyramid, and then locate
these edges precisely at the full-resolution
level [Cl4]). Pyramids can also be used to
encode edges (or curves) detected in an image,
yielding successively coarser approximations
as long as the edges crossing a given block
of the image can be compactly approximated
[C5]. These approximations can then be used
as an aid in linking together edge segments
that lie on long lines or smooth curves [C30].
Two approaches to blob extraction using pyra-
mids were also investigated. One of these
uses pixel linking to construct subtrees of
the pyramid such that leaves of each subtree
are the pixels that belong to a compact,
homogeneous piece of the image [C24]. Ano-
ther approach is based on the fact that any
blob shrinks to a (local) "spot'" at some
level of the pyramid; it detects blobs by
constructing an edge pyramid and detecting
pixels that are locally surrounded by edges
[C21]. This method outperformed all the
others that were tested in the comparative
study of FLIR image segmentation techniques
(see above, Section 1.2a).

Time-varying imagery analysis

a) Image matching

One approach to detecting and analyzing
motion in an image sequence is to identify
sets of corresponding points in successive
frames of the sequence. This is usually
done by searching for matches to pieces of
one frame in the other frame, In order to
obtain sharp matches, it is desirable to
use pieces that contain distinctive, high-
contrast features such #s corners (they
are preferable to edges because the match
to an edge is insensitive to displacement
in the direction along the edge). Some suc-
cessful experiments in image matching using
corner features are described in [Cl2]. A
supplemental experiment, reported in [Cl7],
showed that local intensity-based matching
in the neighborhood of a feature point can
be used to unambiguously locate match peaks
in those cases where the results of the
feature matching are ambiguous.

b) Motion estimation and smoothing

Another apprcach to motion detection, ap-
propriate in cases where the rate of motion
does not exceed one pixel per frame, in-
volves using the space and time derivatives
of the image intensity at each pixel to
estimate a motion vector at that pixel, This
method yields reliable estimates of motion

components only in directions where there
are rapid changes in gray level, Thus in

a smooth region it yields no useful informa-
tion; at an edge it yields only the compo-
nent of motion in the direction across the
adge; but at corner pixels it yields two
components, thus allowing the entire motion
vector to be estimated [Cl6]. Given a re-
gion in the image representing a rigid object
moving parallel to the image plane, we can
estimate motion vectors at the corners of

the object and "propagate" these estimates
around the edges of the okbject to deter-
mine its motion (translation and votation).
This approach to motion estiwation was de-
veloped in a series of rercvis [C22,C23,C29].

The motion vector fields obtained from
srnall image neighborhoods are noisy. If
they are smouothed by simple local averag-
ing, incorrect results are obtained at the
boundaries of moving objects, A better
approach is to use nonlinear smoothing
techniques based on selective local aver-
aging; this does not blur sharp edges
[C31]. A related problem is that of
smoothing the images in a sequence by
averaging successive frames; here one can-
not simply average corresponding pixels,
but must introduce displacements in order
to allow for the motion. 1In this connec-
tion, one need not know the entire motion
vector, but only its component in the gra-
dient direction, since errors in the tan-
sential direction will not cause edges
to become blurred [C32].

c) Optical flow analysis

The changes in an image sequence due to
the motion of the observer relative to the
scene, rather than to object motion, are
known as "optical flow." Given an array of
motion vectors representing optical flow,
methods have been developed of inferring
the parameters of the observer's motion
(translational and rotational) and of de-
riving the relative distances between the
observer and the points .n the scene. Al-
gorithms for deriving relative scene dis-
tance and local surface orientation from
optical flow are presented in [C9], while
a method of deriving the observer's in-
stantaneous direction of motion from opti-
cal flow, and of decomposing his motion
into translational and rotational components,
is develoned in [Cl0].

1.6. Status reports

As mentioned in the Introduction, three pro-

ject status reports were issued [Bl-3] summarizing

the work done during this phase of the project.
The first and third of these reports were also
published in the Proceedings of the two DARPA

Image Understanding Workshops that were held dur-
ing this period (April 1931 and September 1982).
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At a meeting of the principal investigators
on the DARPA Image Understanding Program, held
in January 1982, it was decided to prepare a Final
Report on the overall program. The University of
Maryland was asked to draft the portion of this
report dealing with two-dimensional image analysis
techniques ("low-level vision"). An edited ver-
sion of this draft was also issued as a technical
report [C27].

2. AUTONOMOUS VEHICLE NAVIGATION

This project is concerned with developing
navigation techniques for an autonomous outdoor
ground vehicle. The vehicle will have access to
a stored database containing information about the
terrain on which it is to operate, and will have
sensory input from a passive optical or IR sensor.
The key prcblem in navigating the vehicle is to
relate the sensory input to the stored data in
order to determine the location of the vehicle and
the locations of landmarks or goals, and to plan
paths (from the current location to a goal) that
satisfy given constraints. Additional tasks, on
which preliminary work will also be done, relate
to short-range sensing (e.g., for obstacle avoid-
ance) and to real-time analysis of time-varying
imagery.

Since this project was initiated quite re-
cently, this report provides only a general out~
line of the planned tasks. A vehicle and a test
site have been tentatively selected. Westinghouse
will gather data regarding the site (e.g., high-
resolution terrain model and sample imagery) and
will also design and assemble the vehicle system,
Maryland will develop algorithms for processing the
imagery, relating it to the stored data, and plan-
ning paths for the vehicle. When these algorithms
have achieved adequate performance, Westinghouse
will adapt them to run on the vehicle's on-board
computer, after which they will be tested under
real-world conditions. Concurrently, Maryland
will continue to study problems related to short-
range sensing and real-time processing. Maryland's
work during the initial months of the project has
dealt primarily with time-varying imagery analy-
sis; a paper reporting on one aspect of this work
appears elsewhere in these Proceedings.
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The major focus of our DARPA funded research
rogram revolxgs around issues of dynamic image
processing. (Wel have been examining techniques for
recovery of environmental information, such as
depth maps of the visible surfaces, from a sequence
of images produced by a sensor in motion.
Algorithms that appear robust have been developed
for  constrained sensor motion such as pure
translation, pure rotation, and motion constrained
to a plane. Interesting algorithms with promising
preliminary experimental results have also been
developed for the case of general sensor motion in
images where there are several significant depth
discontinuities, and for scenes with multiple
independently moving objects. A general
hierarchical parallel algorithm for efficient
feature matching has also been developed for
applications of motion, stereo, and image
registration.
) oy

In addition, weé have been designing
parallel architecture that
both parallel

a highly
integrates aspects of
array processing and associative
memories for real-time implementation of motion
algorithms. Finally, there has been a continuation
of the VISIONS static image interpretation project,
with interesting results in top-down processing of
a set of comnlex outdoor house scenes.. Each of the

above research topics is documented\ in papers
appearing in these proceedings [1-6].

I. QUANTITATIVE MOTION PROCESSING FOR
RECOVERY OF ENVIRONMENTAL DEPTH

I.1. INTRODUCTION

The major goal in motion processing is the
recovery of the motion parameters of the sensor and
each independently moving object. The computation
of environmental depth of visible surfaces follows
in a rather straightforward manner. This has
generally involved two stages of processing:
computation of a feature displacement  field,
followed by inference of motion parameters and
environmental depth. We will present several
algorithms for performing this computation in
independent stages, and in several restricted cases
of sensor motion some new alternatives for

IMAGE UNDERSTANDING RESEARCH AT THE UNIVERSITY OF MASSACHUSETTS
Edward M. Riseman and Allen R. Hanson
Computer and Information Science Department

University of Massachusetts
Amherst, Massachusetts 01003

combining the two stages in a robust manner.

The set of image displacements from two or
more images 1is an approximation to optic flow.
During this stage of the processing one faces the
well-known correspondence problem, which involves
the matching of corresponding image points of an
environmental feature in the pair of images. The
second stage involves inference of environmental
information from the optic flow or the displacement
field. This becomes a problem of separating the
translational and rotational components of the flow
field.

Rotation of the

sensor  induces  image
displacements that are a function only of the
rotational parameters and image position; in

particular the feature displacement between images
is not a function of the depth of its environmental
surface point.

The translational motion of the sensor carries
all of the environmental cues. For purely
translational motion, the image displacement paths
are determined by radial flow lines emanating from

a single point in the image plane, that is the

intersection of the translational axis with the
image plane (also referred to as the foous of
expansion - FOE). The size of displacements along

these paths are a function of environmental depth
and distance from the FOE. Thus, the problem of
general motion becomes one of decomposing the
rotational and translational effects of motion, and
then wusing the image displacements from the
instantaneous component of translational motion to
compute depth.

I.2. RESTRICTED CASES OF SENSOR MOTION

Our primary technique for depth inference has
been derived in Lawton's forthcoming doctoral
dissertation [7]. He has shown that in the cases
of restricted sensor motion - pure translation,
pure rotation, and motion constrained to a plane -
one can  bypass, or at least simplify, the
correspondence problem by combining the computation
of the motion parameters with the determination of
image displacements.
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Let us 1illustrate with the case of pure
translational motion [3]. There are two ur.known
sensor parameters which can be specified by_ the
intersection of the translation axis with the image
plane (the FOE). For a given FOE, the flow Llines
emanate radially from this point, and therefore the
matching of an image point in one frame to its new
position in the second frame has been reduced tq a
one-dimensional search along the straight line
between the FOE and the image point. While there
may still be spurious high correlations possible,
the number of incorrect good matches will be
greatly reduced over the usual two-dimensional
correlation process. In cases of the incorrect FOE
there is a strong probability that many points will
have poor correlations at all points along the
hypothesized displacement path. The shgpe of the
resulting error function can be improved .by
selection of "interesting" image point: of high
contrast (boundaries) and high curvature (corners).

The determination of the translational mgtion
parameters has now become a search process using a
global error measure which is the sum of the errors
of the best match on each point's flow path. The
search process consists of two phases: a giobal
sampling of the error measure, and then a local
search at a finer sampling to determine the
minimum. The error function appears to be very
well behaved in a series of experiments on real
scenes, and the algorithm seems rather robust.

In the case of pure rotation, the basic
technique can be applied with minor differepces.
The search space for the correct rotational
parameters is three-dimensional: two paramgters
for the axis of rotation and one for the magnitude
of rotation. The algorithm can proceed in the same
manner by choosing a set of distinguished points,
and then compute a global error on a coarsely

sampled parameter space. This problem is actually
slightly more constrained than the first, because

here the third dimension of the amount of rotation
will directly constrain the image motion of all
points simultaneously, while in the translational
case each point had to be matched independently
(because of differences in environmental depth).

In the case of motion restricted to a known
plane, there are only two degrees of freedom.
Translational motion will be constrained to the one
dimension of the line represented by the
intersection of the known ¢plane and the image
plane. The axis of rotation must be perpendicu}ar
to the plane, and therefore we must only determine
the degree of rotation.

A set of experiments have proven these
algorithms to be very robust in real scenes,
including the outdoor roau sequence from William's
thesis [10] and industrial image domains supplied
by the General Electric Corporation.
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I.3. RECOVERY OF DEPTH FROM GENERAL SENSOR MOTION

As we have pointed out earlier, the flow
fields produced by a sensor undergoing general
motion are difficult to interpret until they have

been  decomposed into their rotational and
translational components. Once this has taken
place, environmental depth can be recovered from

trauslational displacements. Analytical techniques
for performing this computation are extremely
complex and can be quite sensitive to the errors
that are typical in the computation of displacement
fields. It is not feasible to exploit the approach
of the previcus cases where potential motion
parameters were tested by computing a global error
measure of lack of consistency across a set of

image features. In the nrevious cases the
dimensionality of the sear  space was no greater
than three, but here it is a five-dimensional

search space, and the computational demands may be
excessive. In addition the error function cannot
be expected to be well-behaved so that simple
optimization techniques probably would not work.

Recently Lawton and Rieger [2] have described
a surprisingly simple technique that promises to be
rather robust in noisy, 1low resolution and/or
sparse displacement fields. It depends upon the
scene containing a sufficient number of depth
discontinuities of sufficient depth diffetence.
Thus, a scene with several objects at distinct
depths, or a single object of reasonable size
against a textured background, will permit this
technique to be effective,

Consider distinet  surface features at
different depths on an occlusion boundary. Sensor
rotation causes an equal rotational displacement
because these points appear at the same image

location. Thus, the only difference in their image
displacement is caused by a difference in
translational displacement. This leads to an

algorithm which will exploit nearby image points
which are at different depths. Note, however, that
occlusion need not be determined because
differences can be taken of all nearby flow
vectors. They will be oriented on radial flow
lines, emanating from the instantaneous axis of
translation which can be determined by an
optimization procedure. There are several
approaches to determining the axis of translation,
such as the use of a Hough transform to select the
point that most nearly lies at the intersection of
these  vectors. Due to practical noise
considerations, a global error measure is used to
evaluate each possible value for the direction of
the translational axis in a coarse to fine search.
The error measure used is the sum of the magnitudes
of the error angles of the difference vector field
and the set of radial field 1lines. Once the
instantaneous axis of translation is determined,
then the rotational component is overconstrained,
can be determined and then subtracted out.
Environmental depth of image points can then be
computed from the translational displacement.
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The algorithm is not quite so straightforward
because there may not be many reliable image
displacement vectors that are at different depths
and near each other. To the degree that they are
not at sufficiently different depths, their
difference vector will be short and prone to error.
To the degree that they are not near each other,
their rotational components will differ and
introduce error. Thus, practical considerations in
the application of the algorithm remain. However,
Several experiments have shown very promising
results.

It should be noted that occlusion boundaries
of independently moving objects will not satisfy
the conditions for applying this algorithm, and
thus the next algorithm complements this work.

I.4. SCENES WITH MULTIPLE INDEPENDENTLY MOVING
OBJECTS

The algorithms that we have just described do
not confront the additional complexity introduced
when there are multiple independently moving
objects. The global types of constraints that were
described earlier no longer apply across the entire
image. The case of a sensor moving through a
static environment can be equivalently viewed as an
image of a single rigid object with associated
motion  parameters. However, if there are
independently moving objects, they will have
different motion constraints and introduce possibly
serious errors in the global search of the
parameter space for a single set of motion
parameters. Thus, the goal is to decompose the
image, and thereby separate the information in each
flow field, so that motion of each object can be
recovered.

The approach outlined here is presentecd by
Adiv  [4]. It involves a generalized hough
transform, proposing solutions to some of the
problems found in this technique. Hough techniques
are relatively insensitive to rnoise and can deal
with partially incorrect or occluded data. Here,
such a transform will be used to group a set of
displacement vectors which satisfy the same motion
parameters. However, there are a set of problems
that must be considered: non-adjacent elements can
vote for the same image transformation, there are
difficulties in the detection of the motion
parameters of small objects, and fine resolution of
the motion parameter space can require large
amounts of memory and computation time.

The suggested solution to these problems
involves a modified multipass approach. In each
pass windows are located around potential objects
by the degree to which the displacement field is
locally inconsistent with previously found motion
transformations. The Hough transform is applied
separately to the displacement vectors in each
window. Tus, the sensitivity of the Hough
transform to local events is increased and the
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motion parameters of small objects can be detected
even in a noisy displacement field. A
multiresolution scheme in both the image plane and
the parameter space reduce the computational cost,
while still maintaining accuracy.

The algorithm has been shown to be efficient
and robust in extracting motion parameters from
artificial images with objects undergoing 2D
motion. It involves a Y4-dimensional parameter
space of  horizontal translation, vertical
translation, rotation (in the image plane) and
expansion/contraction.

The current research invovles the extension of
this approach to 3D motion and to real scenes.
This extension is non-trivial because displacement
vectors in the 2D motion case involve four
parameters with two constraints; thus, each
displacement vector "votes" for a two—dimensional
hyperplane of the parameter space. In the case of
3D motion when surface depth is unknown, there will
be 5 motion parameters, and each displacement
vector provides only one constraint; i.e., each
will vote for a four-dimensional subspace of
parameter cells, Thus, the signal to noise ratio
in the parameter space will be much lower, and with
the presence of noise in real images, the
determination of peaks in generalized Hough space
will be chrllenging.

II. FEATURE MATCHING BY HIERARCHICAL CORRELATION

Feature matching algorithms are important in
problems involving motion detection, image
registration, and stereo vision. Hierarchical
correlation provides a computationally efficient
feature matching strategy. They can be implemented
in hierarchical parallel hardware architectures,
and they can also be implemented on a sequential
machine to run very efficiently using a coarse to
fine matching strategy.

Glazer, Reynolds, and Anandan [4] have
developed a hierarchical matching algorithm that
consists of matching band-passed versions of the
images at different levels of resolution. The
filters approximate convolution of a Laplacian and
a Gaussian (del-squared-G) of different sizes.
Alternative computational techniques for
implementing the band-pass filter are being
examined. One technique involves computing the
del-squared-G at the finest level followed by a Ux4
Gaussian centered on 2x2 windows to reduce the
resolution by a factor of two on each axis. These
algorithms are computed in the processing cone [8]
of the VISIONS Image Operating System [9].

The matching is performed first on the low
frequency structures occurring at the coarsest
levels of the images, thus providing a coarse to
fine strategy for matching higher frequency
information at the levels below. This reduces the
problem of false matches when, for example, there



is high frequency texture with somewhat repetitive
patterns. Thus  all wuseful information of the
image 1is utilized at different levels: low
frequency information at coarser levels and higher
frequency information at finer levels.

The correlation strategy utilizes the
observation that at some sufficiently coarse level,
the maximum displacement >f an image event between
a pair of images is at most one pixel. This
restricts the search at that level to a 3x3 area
and provides an estimate of displacement within +
1/2 pixel accuracy. The projection of ‘this
estimate to the next finer level provides an
estimated displacement of + 1 pixel and allows
search to again be restricted to a 3x3 area, with
the process repeating downward. There are two
significant computatinnal advantages of this
process. The number of correlation matches
considered is 9*logD instead of (2D+1)**2, where D
is the maximum displacement possible at the finest
level of resolution. In addition, an 8x8
correlation window size was used at all levels, and
this would require a window of size (8D)**2 to
capture the same amount of information in a single
level o!' search across correlation positions.

The algorithm has shown in  practical
experiments to be effective in determining even
small amounts of rotation, seems to be insensitive
to noise, and of course is very efficient.
Experiments have shown that it may not be necessary
to apply the algorithm to restricted sets of
interesting points that have a high degree of
distinctiveness (such as corners). some
experiments have shown consistently correct results
using all points, and thus might work on an
arbitrary sampling of points.

III. A CONTENT ADDRESSABLE ARRAY
PARALLEL PROCESSOR (CAAPP)

Our research environment has maintained a
continuous interest in parallel architectures and
parallel algorithms. Real-time motion processing
will require between one and two orders of
magnitude more computational power than static
vision. Thus, VLSI technology and massively
parallel machines are obvious research directions.

Weems, Levitan, and Foster [11] have developed
a design for a Content Addressable Array Parallel
Processor (CAAPP) and have been applying it to the
motion algorithms with Lawton [5]. The CAAPP is
both a 512x512 Single Instruction Multiple Data
(SIMD) array processor and an associative memory.
The design is based on a 64x64 array of custom VLSI
chips and 1is intended to act as a slave processor
for a general purpose computer system. Each chip
then contains 64 cells, an instruction decoder, and
some miscellaneous logic., There are eight basic
instruction types recognized by the chip, each
performed in parallel by the constituent cells.
Most instructions take one minor cycle time (100
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nanoseconds) to execute. Inter-cell communication
is bit serial and is accomplished by a four-way (N,
%, E, W) cell interconnect network, allowing for
three  types of edge treatments: dead-edging,
circular wrap, and zig-zag wrap. The entire memory
may be bulk-loaded in one video frame time (1/30
second).

A very interesting application developed for
the CAAPP (that makes use of the associativity and
array processing capabilities) is an effective
means of quickly and accurately decomposing a flow
field into its rotational and translational
components to recover the parameters of sensor
motion. The algorithm is an exhaustive search
procedure via a top-down parallel correlation of =
set of rotational and translationai flow rield
templates to find a component pair which most
2losely accounts for the motion depicted in a given
flow field. Currently, 1000 rotational templates
and 200 translational templates are used. Each
cell contains the horizontal and vertical
components of a flow vector, each specified with 10
bits of precision.

Experiments have been performed with a CAAPP
simulator on a VAX 11/780 using a wide variety of
motions and simulated environments. In all cases
examined, the translational template closest to the
actual translational motion was selected. The
rotational template was always close to the actual
rotational motion, but was sometimes not the
closest template. The procedure proved to be
resistant to limited Gaussian noise as well as to
limited random spike noise in the original flow
field. The CAAPP timing calculations revealed that
the algorithm could perform the
rotational-translational decomposition in slightly
more than 1/4 second. Given fabrication techniques
available in the immediate future, execution times
can be expected to be significantly improved.

Using the CAAPP strictly as a parallel array
processor it 1is of course possible to perform
standard image processing operations such as
convolution. For example, a simple 3x3 Gaussian
mask convolution can be done in 98 microseconds on
the CAAPP, It should be noted that the time
required to perform a convolution on the CAAPP is
constant for a given image size and only varies
depending on the size and complexity of the mask.
For example, a 10x10 mask of 8 bit multipliers
applied to an image of 16 bit pixels (with the same
number of pixels as the previous example) would
require on average approximately 30 milliseconds
(about one frame time). The method used is not
restricted to square masks and is actually easily
adapted to such shapes as annuli and disjoint
areas.
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IV. RULE BASED STRATEGIES FOR
IMAGE INTERPRETATION

As part of the VISIONS long-term project for
the interpretation of static images, we have
developed an experimental testbed for examining
issues in knowledge directed processing. Weymouth,
Griffith, Hanson and Risemen [6] have Deen
developing a rule based image interpretation system
which has been effective in interpreting a set of
complex outdoor scenes. The system utilizes world
knowledge in the form of simple object hypothesis
rules, and more complex interpretation strategies
attached to object and scene schema, to reduce the
ambiguities in image measurements.

Duseriptions of scenes, at various levels of
detail, are stored in a set of schema hierarchies
[121. A schema graph is a data structure defining
an expected collection of objects, such as a house
scene, the expected visual attributes associated
with the objects in the schema (each of which can
have an associated schema), and the expec.ed
relations among them. This stored knowledge can be
used to infer the presence and location of other
objects, or verify uncertain hypotheses via spatial
consistency of object labels. However, in order to
use this knowledge there must be a basis for
partial interpretations.

In the initial stages, there are few if any
image hypotheses, and development of a partial
interpretation must rely primarily on general
knowledge of expected object characteristics that
are independent of other hypotheses. We propose an
approach to object hypothesis formation which is
both simple and effective. It relies on convergent
evidence from a variety of measurements and
expectations. The rules involve sets of partially
redundant features each of which defines an area of
feature space which represents a "vote" for an
object. The features include color, texture,
shape, size, image location, and relative 1location
to other objects. For example, in an outdoor scene
taken with a camera in standard position, one would
expect grass to be of medium brightness, to have a
significant green component, to embody a modest
degree of texture, to be located somewhere in the
lower portion of <¢he image, =te. These
expectations are translated into a rule which
combines the results of many measurements into a
confidence level that the region (or group of
regions) represents grass.

Convergent evidence from multiple
interpretation strategies is organized by top-down
control mechanisms in the context of a3 partial
interpretation. The extreme variations that occur
across images can be compensated for somewhat by
utilizing an adaptive strategy. This approach is
based on the observation that the variation in the
appearance of objects (region feature measures
across 1images) 1is much greater than object
variations within an image. One such strategy
extends a kernel interpretation derived through the
selection of object exemplars, which are regions
that represent the most reliable image specific
hypotheses of a general object class. The use of
exemplar strategies and other top-down strategies
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results in the extension of partial interpretations
from islands of reliability. Finally a
verification phase can be applied where relations
between object hypotheses are examined for
consistency. Thus, the interpretation is extended
through  matching  and processing of region
characteristics as well as semantic inference.

Experiments are being conducted on a set of
fifteen "house scene" images. Thus far, we have
been able to extract sky, grass, and foliage (often
separating trees and bushes) from nine house images
with reasonable effectiveness, and have been
Successful in identifying houses and their parts,
including shutters (or windows), liouse wall and
roof in three of these images. The interpretation
strategies use many redundant features, each of
which can very often be expected to be present.
The premise is that many redundant features allow
any single feature to be unreliable. The features
utilized include those mentioned earlier (color and
texture attributes, shape, size, location in the
image), as well as relative location to identified
objects, and similarity in color and texture to
identified objects. Object hypothesis rules were
employed as described in previous sections, and
additional object verification rules requiring
consistent relationships with other object labels
are being developed.
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Recent Results of the
Rochester Image Understanding l’r(jﬁect

J.A. Feldman, D.H. Ballard and C.M. Brown

Computer Science Depurtment
University of Rochester
Rochester, New York 14627

1. Robust Vision Operators
1.1, Parameter Networks and the Hough ‘Fransform

One of the most dilTicult problems in vicion is
segmentation. Recent work has shown how to calculate
intrinsic images (e.g. optical flow, surface orientation,
occluding contour, and disparity). These imuges  are
distinctly easier o segment than the original intensity
images, Such techniques can be greatly improved hy
incorporating Hough methods. The Hough transform idea
has been developed into a general coutrol techmque,
Intrinsic image points are mapped (mmany 1o one) into
‘puraineter networks’ [Ballard, 1983]. This theory explains
segmentation in terms of highly parallet cooperitive
computation among intrinsic images and a set of
paramcter spaces at different levels of abstraction,

The most recent application of these ideas are o
improved shape-troin-shading calculations which work on
several spaces [Brown et al, 1983] and motion extraction
(Ballard & Kimball, 1983], ‘This domain specific effort is
closely linked lo onr new work on a more geueral theory
of Hough-like computations and general implemerntation
techniques for them,

The theory is also useful in analysis ol cache-based
Hough ‘Fransform implementations. It is an appealing idea
1o use a small content-addressable store to accumulile
Hough transform results, rather than a petentially huge
multi-dimensional array. ‘Fle initial echnical issues were
discussed in [Brown & Sher, 1982, We are currently
pursuing VLSI implementations,

12 Hough ‘Iransform Implementation

Earlier work on the Hough transform [Brown, 1983:
Brown & Sher, 1982 has led in three directions,

1) Research toward a theory of cache accumulator
arrays [Loui, 1983; Brown & Feldman, 1983)

2) Experiments with complementary HT and
cache management strategies [Brown et al,, 1983)

3)  Hardware (VLSI) designs for HT vote caches
[Sher & ‘Tevanian, 1983),
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Work in each of these directions is in progress; some
of the cited references are draft documents, 'the behavior
of caching schemes for accumulation of votes in the
Hough transform is equivalent to the statistical problem of
estimating the mode of a distribution using only u finite
memory for vote tallies, and is a generalization of the
familiar ‘secretary’ (maximum of a sequence, ‘beauty
contest’) problem. Loui's document explores this avenue
for analysis. The experiments with H'T' iniplementation are
o see how well the peak-sharpening provided by
complementary H'I' performs with real iniages on complex
shapes, Work on cache architectures (hierarchical schemes,
cascaded caches) is ongoing,

The VLSI design project produced a circuit for vote
cacheing that can be cascaded to provide a cache of any
length, Work on improving the efficiency aud power of
the design will continue this summer.

1.3 High Level Planning

In general, problem solvers cannot hope to create plans
that are able to specity fully all the delails of operation
beforehand and must depend on run-time modification of
the plan to insure correct functioning. The run-time
planning idea becomes particularly important when
different plan segments are being explored concurrently,
These communicating segments may require sophisticated
actions e.g. (do PLAN, until PLANy). ‘These issues are
being studied by [Russell] in the context of 4 cooperalive
planning and execution system for manipulation tasks.

2, Computing with Connections

We are continuing our interest in problem-scale
parallelism, both as a model of animal brains and as a
paradigm for VLSI Work at Rochester has concentrated
on connectionist models and their application to vision.
‘the framework is buill around compultational modules,
the simplest of which are termed p-units. We have
developed their properties and shown how they can be

applied to a variety of problems [FFeldman & Ballard,
1982]. More recently, we have established powerful
techniques for adaptation and change in these networks
[Feldman, 1982].
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A mgor milestone was achieved with Sabbuh’s thesis
on massively parallel recognition ol Origami-world objects
[Sabbah, 1982]. Sabbah’s work extended the connectionist
methodology  to a  problem  domain  with  several
hierarchical structural levels, The resulting program 1s, 10
our knowledge, the nmiost notse-reststant system for dealing
with this level ot complexity, One outcome of Subbali's
effort has been ua project to build a general purpose
simulator for masstvely  pavallel systems [Small et al,,
19%2),

The general connectionist sinttlator has been well
tested and is being used in a number of apphuations, One
project involves a quile detailed stmulation of motor
control networks of the ocenlo motor system [Adduank,
1983). Another application is 1o & spreading aclivation
model of word sense disumbiguation and related problems
in natural language understanding (Cottrell & Snuall,
1983]. A major new effort involves modelling conceptul
knowledge (such as thal needed for high level vision) in
connectionist terms. The simulitor has also heen g Starting
point for some of our efforts lowards VESH realization of
connectionist machines (Section 5),

Ior a VESE design couse, a circuit was designed 1o
implement  key  aspects  of  the  "connectionist”
compntational paradigm [Raimero & Kauts, 1983]. This
cited document is a course project report, and the exercise
was mainly usetul in o isolating  particular  technical
problenis that must be addressed in any such parallel,
aclivation-passing computer,

3. Motion

Our interest in motion has centered around methods
for extracting rigid body parameters from optic Now and
intensity unages. ‘t'hese paramelers are extremely useful in
navigation and target tracking, Currently these nine
parameters  (origin, ranslational  velocity, rotational
velocity) can be extracted from flow via a Hough
technique [Ballard & Kimball, 1983). We are also pursning
the nse of these purameters 1o speed up the flow
computations themselves [Stuth et al, 1983].

4. Shape

The description and recognition of complex shapes
continues 1o be a major focus of the project. The analysis
of the dot product space representation has been improved
to handle certain pathological cases, and has been
generalized to accommodate different criteria for the
goodness of the representation,

This simple concept of shape lias been applied 10 the
problem of reconstructing three-dimensional surfaces from
very sparse data, ‘The key idea is 10 nse appropriate shape
descriptors to hypothesize a trausformation which accounts
for the difference in shape between successive contours.
When the hypothesized transtormation is minor, very
sinple-minded  surface reconstrucuon techniques are
sufficient. When there are major differences in shape or
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position  between  suecessive  coutours, our nethod
hallucinates new contours, using the hypothusized shape
transformation [Sloan & Ilrechunyk, 19%1].

Hierarchical descriptions of shapes were considered in
(Ballard & Sabbuah, 1981] in a preliminary fashion, Gar
previonsly reported shape model [Hrechanyk & Bullard,
1982] councentrated on problems of view-mvariance and
attention shilting within u single prototype. 'Fhis model has
been extended 1w hundle the problems of extrucling
primitive shape descriptions from nowsy intuges, Our work
was motivated by dissatisfictions with snioothuess criterta
for intrinsic image conputations, Onr current model nses
correspondences culled view Irames as prinitives, This
model allows gestalt grouping to be modelled as well as
parallel search tor prototypes and parameter tracking
(Hrechanyk & Ballurd, (this Proceeding)).

The practicality of shape from shading computations
and their interaction with the determination of other
image parameters  (such as  illnmmant  posiiion)  wis
addressed by two papers in the Fuall, 1982 DARPA Image
Understmding — Workshop,  Since  then  we  have
implemented a multi-resolution  shape from shading
algorithm that exhibits high efticiency and accmacy in
surface reconstriction of large (128 » 128) irvegular shapes
(I'igure 1). We are now applying the algorithin (o real
images, and  want 1o investigale  scenes  with  non
[Lambertian  reflectance  funclions that are unknown
apriori, We want 1o explain how humans in facl use
shading 1o derive shape, given the complexity of
reflectance funclions wid imaging situations in the world,
Fwo competing theories are that somehow the reflectnice

functions are derived fairly accuraiely by an adupuive
procedure, or instead that we only ‘supporl’ a small
number of reflectance functions that are selected by other
cues (such as gloss),

5. General 'T'heory of Vision

Work in our laboratory, wmong others, has
demonstrated  strong  links  between  powertul U
techniques and computations used by animal visnal
systems, We have established strong tes with a wide range
of wvisual scientists at Rochester and a viriety of
collaborative efforts are underway, One eurly project 1s L0
survey the computational similarities in natural and
computer vision [Ballard & Coleman, 1983].

We have begun 1o exploit Rochester neurobiology
expertise in order to hone and improve our connectionist
modelling efforts. One difficult avenue is to specify the
interface between our compittational models and the state:
of-the-art neurobiological picture. Our efforts w this
direction are summarized in [Ballard & Coleman, 1983
and the collaboration is continuing. Another effort is our

attempt to develop a general framework for theories ot

vision that would provide a common structure Tor
integrating studies from various disciplines [l'eldman,
1982],
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Figure 1: Surface Reconstruction of Large Irregulir Shapes
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IMAGE UNDERSTANDING RESEARCH AT USC:1982-83

R. Nevatia

Departments of Electrical Engineering
and Computer Science
University of Southern California
Los Angeles, California 90089-0272

I. INTRODUCTION

This paper summarizes our major
research activities for the period of
October 1982 to April 1983. More details
can be found in other technical papers in
the proceedings of this workshop [1-2] and
the proceedings of the computer vision and
pattern recognition conference being held
concurrently with this workshop [3-5]. Our
main focus has continued to be on
developing a high-level symbolic matching
system that would be useful for the tasks
of map-updating, autonomous navigation and
object recognition. We have largely wused

zerial images for testing, but the
techniques should also apply to other
domains. We have also been working on

generating better descriptions, 1including
improved segmentation, shadow analysis and
stereo. We have also continued work with
Hughes Research Laboratories on hardware
implementation of IU algorithms.

IT. SYMBOLIC MATCHING

Our recent work in this area has been
primarily in extensive testing and
evaluation of our previously reported
matching methods [6-7]. We have compared
our relaxation matching scheme to a variety
of others, using different convergence and
confidence wupdating criteria. These tests
indicate that criterion optimization method
is superior in terms of the number of
iterations needed and in the accuracy of
the rasults,

We have applied our line matching
technigue to the 1inspection of printed
circuit boards for missing or improperly
inserted parts. The system developed for
aerial images required only small
modifications to incorporate a more complex
model representation; these efforts are
described in [3].
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ITI. STEREO MATCHING

Conventional stereo matching uses
correlation of intensities in some form, in
selected windows of two images. Some of
the more modern approaches, e.g. [8,9],
match edges, which are likely to be more

invariant, We have recently started
experimenting with matching of line
segments, Initially, we attempted to apply
our above «cited 1line matching method;

however, the distortions inherent in stereo
images led wus to a different matching
criterion. Essentially, our system finds
the set of matches that gives minimum
"differential dispanity", i.e. the flattest
consistent interpretation. This system
needs further development, but the initial
results are very promising; this work is
described in detail in [1].

IV. SHADOW ANALYSIS

We have been working on using shadows
to extract heights of structures; our work
on extracting heights of buildings by using
a priori knowledge of their shapes has been

reported previously [10]. We have
genervi..ed this work for other objects,
e.g. o0il tanks, by using the known

direction of illumination strongly to wake
corrcspondence between object boundaries
and their shadows. Some of our new work is
described in [4].

V. SEGMENTATION

We have developed a new texture
segmentation system that wuses relatively
simple measures of texture uniformity. The
segmentation is hierarchical, a low
resolution segmentation is used to compute

a more accurate segmentation at a higher
resolution level. The method is described
in [2].
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r~ SURFACE CONSTRAINTS FRQM LINEAR EXTENTS

!

John R. Kender

Department of Computer Science, Columbia University

-
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o Abstract

= This paper demonstrates how image features of
linear extent (lengths and spacings) generate nearly
image-independent- constraints on underlying surface
orientations.  General constraints are derived from the
shape-from-texture paradigm; then, certain spocial cases
are shown to be especially useful. Under orthegraply, the
assumption that two extents are equal is shown to be
identical to the assumption that an image angle is a right
angle (i.e. orthogral)hic extent 15 a form of slope or
skewed symmctryf. Inder perspective, if image extents
are assumed cqual and parallel, extent again degenerates
into slope.  In the general perspective case, the shape
constraints are usually complex “fourth-order equations,
but they often simplify--even to graplic ecnstructions in
the image space itself.” If image extents are colinear and
assumed cqual, the constraint equations reduce to secoud
order, Wilj] several graphic analogs. If extents are
adjacent as well, the equations are first order and the
derived  construetion  (the . "‘gack-knife method”}" is
particularly straightforward and general.  This metliod
works not only on measures of extent per texel, but also
on reciprocal” measures: texels per extent.  Several
examples and discussion indicate that the methods are
robust, deriving surface information eheaply, without
search, where otlier methods must faill‘.‘_*

1 Intreduction ™.

lu this paper, we show how certain simple aggregate
image properties involving spatial extent along one
dimension can be used as cues for determining underlying
three-dimensional surface orientation. Image-measurable
properties such as lengths and spacings are shown to
generate constraints on local surface slope in a nearly
Image-independent.  way. The derivation of these
rvlnTionships s idonticn!’in analytic method (‘‘shape from
texture”) and representational” structure (the gradien!
space) to those derived for other imaging phenomena such
as skewed symmetry or image slope. ws, they provide
additional surface information in a form (either equation
or_graph) that is easily integrable with that of other
existing algoritlins.

Linear extents are measurements along a straight
image line of cither objeets (in which case they are
lenglhis} or virtual objeets (in which case they are
spacings). The exact form of the input to these analyses
can vary. A prior edge-detection and hinking step, or a
segmentation-like step is assumed.  Lengths are t’ien
linear measures of image tokens such as elongated blobs,
and spacings are linear measures of the virtual lines
between image tokens. Spacing behaves the same way as
length does; often it is more conveniently available,

*This research was sponsored in part by the Defense
Advanced Rescarch Projects  Ageney under contract
N00039-82-C1-0427. .
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In  general, this paper follows the image
understanding conventions presented in, among otler
places, [Kender 80a].  That is, the image coordinate
system considers the z axis to be positive in the direction
of view; the image itself to be plane z=1, which has been
rotated in front of the lens at the origin; and the unit of
lengtl in the system to equal the focal length of the lens.
Surfaces in the scene are locally represented by planar
patches, and the surface gradient of the patch
a=px+qyte is rg{prosonted y the point (p,q{,) its
gradient, in the gradient space.

The problem of deriving surface iaformation from
textural and regularity assumptions occurs in two steps.
First, the textural element--in this case an image extent--
is backprojected onto all surface patches possible. A niap
of the scenic measure of the component is recorded. The
recovered scene extents are usually a function of the
image cxtent’s position and the surface's parameters. In
the second step, two or more nearby textural elements are
assumed  to  be equal in measure in the scene.
Mathematically, this' means that the maps can be
intersected to find those surface patch parameters that
generate for each texel the same measuve (that is, the
same texture). Because the gradient space is coupled to
the image space--a rotation in one induces an equal
rotation in the other--the problem of backprojecting
textural elements often is can be simplified by factorin
out rotation. That is, the camera roll component does no
affect the depth and surface information of the image in
any significant way.

2 Extents under Orthography

For the case of spatial extent under orthography
the rotational coupling rednces it to the prob%em of
backprojecting a single horizontal extent between the
points (a,y} and (b,y)," where l.=(b-a) is the image cxtent
tsr'e Figure 1). Further, the Jacobian of the deprojection
mapping of " image. space onto the surface space is
constant. (It is equal to ||N&|, the norm of the surface
normal N:(p,q,-li.) Thus all induced surface extents are
preserved under translations of their sources in the image,
and any candidate iniage extent can be translated to the
origin. . The problem then reduces to that of
backprojecting the line from {0,0) to (1.,0): a problem with
one free parameter.  Such simplifications characterize
orthographic projection in general, but the resulting
texture maps are often weak in analytie power, as the
following discussion shows.

Backprojecting the image point (x,y,1) onto the
lane with equation z=px+qy+c is aehieved by the
ransformation: (x,y,1} becomes’ (x,y,px+qy+e). Without
botliering to set up a detailed sceneé coorgm_ato system, it
is casy to see that the two points backproject fo (0,0,e)
and ZL,O,EL+c) regpectively. ~ The scene extent is
therefore Lrsqrt l_+p"s, which is a function of p and ¢
this is the normalized texture property map.
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Figure 1: DBackprojecting an extent under orthography.

Note that the q component does not affect the scene
extent.  This is because q measures departure from
“verticality”, and a horizontal line is only affected in
hn(‘kprojloction by that component which™ alters ‘“left-
right” slant the II) omponent).  When graphed in the
gradient space, this map has the property that the
normalized texture property of extent is a hyperboloid of
ane sheet, with a minimum value of I, on ‘the q axis.
Therefore, I)m-kpml'loction under orthography never
decreases measures ol extent.

To wuse this normalized texture property ma
NTPM), consider an image with two ‘extents’ in it.
Suppose they arise from parallel extents in the seene; this
parallelism is carried over into the image. But under
orthography, either extent can be translated into
superimposition on the other. Thus, if they are of equal
extent, [hoy {and their NTPMs) exactly coincide and no
further information about the scene is obtained. If they
are uncqual in extent, they will superimpose with unequal
overlap; since the (-ouk)lmg of the gradient space maps
also canses the NTPMs to superimpose, therg is no
solution. That is, jf Ly and Ly differ, Lysqrt(1+p®) never
equals Lo (lrt.(l-i-p'), and thefe is no s&r ace patch that
can support two equal, parallel scene extents if there are
unequal image extents. Thus parallelism of equal extents
under orthography ~provides no information about
surfaces, exeept in this weak, negative fashion,

Now suppose the extents arise from non-parallel,
but equal extents in the scene. This situation is more
interesting: the image extents can be translated so that a

air of their ends will meet and form an angle. Becanse
he image extents are non-parallel in the image as well,
their NTPMs have will have also been rotated different
amounts. Further, their image measures are, in general,
unequal, so the NTPM intersection is non-trivial.  The
resulting constraint equation is a messy one in terms of
14, I, their joint angle, and second powers of p and
q. iloWevor, it 1s not difficult to prove that the constraint
on surface orientation that it induces can be graphed as a
hyperbola in the gradient space. The Tfollowing
construction shows that the hyperbola is the Kanade
hyperbola [Kender 80b], which usually arises under the
assumption that a given image angle is caused by a scene
right angle.
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Consider Figure 2, in which the (wo image extents
forming their angle have been closed off with the addition
of a line. It is well known that orthography preserves
midpoints of lines; thus the image figure, with yel another
line connecting the vertex to this midpoint, can be seen as
a scene isoscoﬁ‘s triangle in perspective. Given this, the
angle formed by the ;}hl}n(lo to the base in the seene must
be a right angle: this is the Kanade assumption. The
surface constraint then is identically derived.

Figure 2: [Equal extent is skewed symmetry.

A special case occurs when image extents are
themselves equal, as with the corner of a square or
thombus. The altitude-to-base angle constructed in the
image is found to be a true right angle as well. The
second order constraint equation now degenerates to a
lincar one. Its graph in_the gradient space’is represented
by two perpendicular lines through the origin; one of
them is parallel to the triangle's base. These constrained
surface ~orientations lhave a easy interpretation: the
underlying surface could have pivoled about the altitude,
foreshortening both halves of the triangle equally, or, the
surface could have pivoted about the base, foreshortening
the entire triangle, but without skew., Note that if the
imnfz;e is assuined to be that of a square corner, it can be
analyzed solely in terms of slope phenomena, The scene
then contains two right angles: t]he corner one and the
induced one. (The two Kanade hyperbolae intersect in
the gradient space, giving a Necker pair of orientations.)

Equal extents in the image under orthography
therefore either give trivial results, or reduce to already
known cases of image slope and angle. }This is even true
for some other textural configurations for extents whieh
are not covered here.)

3 Extents under Perspective

The analysis of extents under central perspective is
more (‘01nll>|0x, but it yields more powerful algorithis for
mage understanding. Under perspective, the gradient
space remains coupled to the image space, still saving one
degree of = freedom in analysis ~(the camera  roll
component).  However, the backprojection function is
more elaborate. In particular, the image point (x,y,1) is
taken onto the surface z=px+qy+c by -c}(l-px-

v))(x.y,1). This mapping has a non-linear Jacobian:
therefore, the mapping of image extents into the scene
extents is eritically ‘affected by translations in the image.
This implies that ‘the general backprojection of an image
extent ()“ meastre L must be from (a,y,1} to (b,v,1), where
L=(b-a), since no simplifying translations are possible.
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Tlrus, there are three free parameters.
are taken into  (-¢/(1-pa-qy))a,y,1) and (-c
¥

The two Fointﬁ
qy)ia,y,1), respectively.

J{1-pb-

The irduced surface extent is calculated in the scene
by the usual Euclidean metrie, yielding a complex NTPM:

L{1/(1-pa-qy))(1/(1-pb-qy))sqrt({1-py)>+p2(y>+1)).

(The calculation here, as in the orthographic case, is
somewhat like a finite difference approximation to a
derivative. Ilowever, under perspective, it is_exactly the
finite difference that is needed, since what is important is
the dv{mrturos from linearity.) For case of reference, this
NTPM will be abbreviated to

L(1/{1-pa-qy))(1/{1-pb-qy})S(py)

Notice that tlie function S(p,y) is independent of
both a and b.

Theoretically {or even practically), this function is
usable in ns raw form. That is, given two extents in an
image under central [Rers ective, il is possible to gencrate
the appropriate NTP’Ms for both (subjeet to their position
and orientation), and to intersect their graphs--as if they
were [lough accumulator arrays. The resnlt would be a
small  set of surface orientations which  would
simultaneously normalize the two induced surface extents
to equal measure. Ilowever, in nearly all cases, this
involves tle solutions to constraint equations that are of
fourth order in p and q. Only a few imr3e configurations
ﬁonerate simple surface constraints. (Some configurations

1at one might expect would reduce the complexity do
not: for example, iniage extents that are radial with
respect to the image origin). The ones that do simplify
have the added benefit that they appear to be relatively
cominon.

3.1 Equal and Parallel

First assume that image extents arose from scene
components that were not only equal in measure, but
were parallel on the scene surface. A simple construction
(see  Figure 3) shows that once again the inage
configuration can be handled solely by considerations of
image slope. Two equal and ?ara lel scene lines form a
parallelogram; n the image, their pairs of sides can be
extended to derive two vanishing points. Each vanishin
point implies a linear constraint In the gradient space: 1
an image point (x,y})I 1s a vanishing point of a surface, then
the surface must have a gradient gp,(]]) which satisfies
px+qy=1 (r[Shnfcr 8:'3]1): 'wo such_linear constraints
uniquely define a vanishing line, which in turn uniquely
defines the surface orientation.

3.2 Equal and Colinear

Assume now that the image extents did not arise
from parallel scene extents. There seems to be only one
other '-'un{)hfymg set of cases: those wh:n the scene
components are colincar.  Although these cases also
generate vanishing poiats, interestingly, they do not
reduce the problem again to one of image slopes. Nothing
can: colinear exterts have only one slope in common.

The images of colinear scene components are also
colinear. Tlie reverse is not true, though tlie heuristic
positing of that truth ofien is most useful. 1t would be
yet anotlier preference heuristic, similar to those used in
other contexts in image understanding: for example,
nearby 1image pixels arise from actual scene patcl
neighbors (slmlp(‘ from shnding], nearly right angles arise
fron: scene right angles (skewed symmetry}, near-parallels
arise froin parallels {one form of shape from texture). ete.

51

vanishing line

Figure 3: [Iqual parallels are equivalent to slope.

The image configuration in the most general case
reduces to the following. Four points lie on the horizontal
image line at height y; they are A=(ay), with B, C, and
D defined simi]nr%y). T'hese four points defme two unnFe
exteuts, L=(b-a) and R=(d-c;), respectively. The
assumption of colinearily allows the NTPMs of the extents
to be put into correspondence easily: they are already in
the proper orientation, due to the one shared image slope.
Since tEo also share identical terms in S(p,y), equating
the N'l‘l’.{i yields a surface constraint that reduces to
second order in p and q:

(1-pa-qy)(1-pb-qy)/L = (1-pc-qy)(1-pd-qy)/R

Although this equation can be exactly solved, it has
a simplifying graphic construction that can be drawn_in
the image space itself, directly yielding the vanishing
point(s). Rewrite it in the following form:

(X-a){X-b)/L. = (X-¢)(X-d)/R, where X = (1-qy)/p

If X satisfies the constraint equation, then scene
extents are ecqual, as desired. Further, this is a very
desirable X: ii also satisfies the formal definition that

X+qy=1, that is, the point (X,y) is a_vanishing point.
Rlote that (X yz lies on the hne of colinearity; all that
must be calculated is the value of X itsell. Formally, the
equation is of the form of the intersection of two
parabolae. The left parabola has value 0 at both a and b,
and a minimum value of L/4 midway between them. The
right parabola is exactly of the same shape, except for
scaling (its midpoint minimum is R/4). Thus, the value of
X can be graphically determined by drawing the

arabolae on the image, and finding their intersection.
rNotice that the mathematics, as well as the construction,
inds a vanisling point between b and ¢, where the image
lengths are on opposite sides of any vanishing line.)

The parabola method can be refined in the following
way. Note first that 1t is not necessary to draw the
arabolae on the x axis: they can be translated upwards
o the horizontal line of colinearity itself. Secondly, the
parabola are only constrained to pass through the point
pairs; their exact shape 1s not critical, as long as the
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parabolac are similar (i.e. they can be mutually scaled).
Third, since the value of X is a purely formal one, the
parabolae can be imagined to be drawn oul of the image
plane: that is, either parabola can be though of as
extending into the -z axis direction.

More appropriately, the value of X on either
parabola can be considered as an image feature in its own
right. The caleulation is really a type of local feature
assignment, with with each position on the line of
colinearity being assigned two simultancous features.
That position where the features are identical is the
vanisling point,

Parabolae grow very quickly, however, away from
their roots. This can be compensated for formally by
taking the square root of this image feature. ~The
assignment of values is now via hyperbolae of similar
shape, which grow (subjlinearly. They also have the
(aesthetic) advantage of being undefined within the image
extents themselves, the interior of which being one place
where a vanishing point ought not be. In a pinch, the
hyperbolae can also be approximated by their asymptotes,
which, being strictly lincar, are easier to compute. For
example, the left "hyperbola is sqrt({X-a)(X-b)/L); its
asymptotes originate at the left texel's midpoint, and have
slopes of.sqrt(f’,) and -sqrt(L) (see Figure 4). Still other
modifications and approximations of this formal equation
are possible; they would need to be analyzed for accuracy
and computational efficiency.

>

C D vonishing point

Figure 4: The hyperbola and asymptote methods.

3.3 Equal, Colinear, and Adjacent

The last special case is the simplest, but perhaps the
most powerful. " Suppose that two colinear and adjacent
image extents are derived from two colinear, adjacent,
and equal scene components. That is, as in Figure 5, the

oints B and C have merged. Then {he constraint given
or the general four-point colinear case simplies even
further since B=C, to that of a linear constraint in p and

q:
(1-pa-qy}/L = (1-pd-qy)/R

By the same formal method as above, it can be
rewritten as:

(X-a)/L = (X-d)/R, where X = (1-qy)/p

Either side is the equation of a line, With exactly
the same flexibilities of the parabola scheme above, these
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vanishing point

Figure 5: ‘“‘Jack-knife” mecthod for vanishing points.

lines can be plotted in the image space (see Figure 5).
That is, they can extend out of the image in the -z
direction; they ‘can be mutually scaled; X can again be
considered an’image feature, labeling each position on the
line of colinearity with a two-tuple of features. As before,
the vanishing point occurs when the features are equal;

this occurs at X=(Ld-Ra)/(L-R).

Yet another graphie construction is possible. It too
has a feature space interpretation, this time very useful.
Construct at A" a feature of value L; conceptually, this is
constructed by a line of length L perpendicular to the line
of colinearity. (Alternatively, the line can point in the -z
direction.) ‘Similarly construct at D a feature of value
R. The resulting figure may resemble a jack-knife, with
its two blades opened in parallel, outwards. (As with a
jack-knife, the blades do not need to be perEendlculur to
their base; however, for the inethod to work, the blades
must be parallel. Tile.proof is by similar trlangles.l) Then
under this interpretation, the feature values of alt other
points on the line of colinearity are determined by linear
extrapolation from the two given ones. That is, values
are generated from this new X by &R(X-a -L(X-d)}/(L+R).
In particular, the vanishing point i1s where this image
feature value jis 0, as ecan be verified by direct
substitution. It is not hard to show that this construction
really does implement an image feature: it is scaled
inverse depth.

These methods are formal, as with the parabola
method, other modifications of the constraint equation are
possible as well. It should be noted that the jack-knife
equation can also ve derived from the application of
methods of projective geometry: either through the cross-
ratio, or through the appropriate nine-point geometric
corstruction.  ‘The parabola method apparently cannot,
however, as it deals with five points at a time.

3.4 A Reciprocal Method

The jack-knife method has an interesting extension.
The primary heuristic assumeation.required for its use only
requires that image extents arise from equal surface
extents; however, what is meant by extent ean be defined
in_many ways. In particular, a series of N extents laid
colinearly end to end on a sirface ean be considered
cither as a one extent of length N, or N of length one (or

many other combinatipns(l. Often, runs of multiple
extents can be obtained by .Ioo'kin%. for repeated
distinguishing events along an arbitrary line through the
image.  {Strong edges of the same polarity, say, are

events: see Figure 6).” The prior jack-knife method would
try to normalize the extent of the entire run. But under
the assumption that the events form a texture, the
method can be extended to normalize each event as well.
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Abstract
‘A computational framework for solving the visual cor-
respondence problem is presented and evahiated by using
a stochastic image model. The framework differs from pre-
vious work in that it emphasizes the combination of a large

€ collection of independent measurements. Partial derivatives

of images smoothed with a few different-sized Gaussian
Sfilters are suggested as suilable measurements. A specific
computation is shown based on a stochastic image model
1o reliably establish whether or not two points correspond,
provided that the signal 1o correspondence noise ratio in
the images to be matched exceeds 1wo. The computation
has been applied 1o artificial and natural images with en-
couraging results.

n

1. Introduction

The problem of matching up two similar views of
the same seere is one of the critical problems which any
powerful vision system must solve, Known as the cor-
respondence problem, it occurs most notably in stereopsis
where the two views come from separate vantage points,
and in motion analysis where the two views come from
the same vantage point but are separated in time. In
stereopsis, a solution to the correspondenee praoblem yields
relative depth information, while in motion analysis, it
yields information which can be used to segment an image
into regions belonging to different objects and ean be
used to approsimate their velocities. The human visual
system is known to solve both correspondence problems
with impressive range, resolution, and noise immunity
though the manner in which it does so is ill understood.
Computer solutions to the eorrespondenee problem have
fallen far short of similar performanee, particularly on
natural images. A new approach to the problem will be
presented here which, it is hoped, will provide insight into

This report describes research done at the Artificial Intelligence
[aboralory of the Massachusctts Institute of Technology. Support
for the laboratory's Artificial Intelligence rescarch is provided in part
by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Rescarch contract N00014-75-C-0643,
the Office of Naval Research under contract number N0014-80-C~
0505, and the System Development Foundation,

: Computing Visual Correspondence

Michacel Kass
MIT Anificial Intelligence Laboratory
545 Technology Square
Camnbridge, MA 02139

the structure of the eorrespondence probleny, as well as a
robust teehnique for solving it.

The eorrespondence problem ean be stated quite
simply as follows. Given two similar images of the same
scene, a point in the first image is said to correspond
with a point in the second image if both arc projeetions
along lincs of sight of the same physical point. The
correspondence problem consists of trying to match up as
many pairs of corrcsponding points as possible given the
intensity profiles of the two similar images.

All algorithmic solutions to the problem are based
on the idea that the light intensity profiles surrounding
corresponding points are quite similar. For eaeh point
in the first image, only points in the sccond image with
quite similar local intensity profiles need be considered
as potential matches. If the similarity measure is ehosen
appropriately, then a large fraction of the points in the
first image will have only one potential match in the
seeond. If it ean be confidently determined that the
similarity between these points and their potential matehes
is not due to ehance, then the unique potential matches
ean be trusted as eorreet matches. Global eonsisteney
eonstraints ean be used in some cases to ehoose among
several potential matehes, but this may not be necessary
if the local information is extracted properly.

Choosing a good measure of similarity for the eor-
respondence problem is quite difficult. Corresponding
points often have substantially different light intensity
values because of the different viewing angles. More
importantly, at depth discontinuities in stereopsis or ob-
ject boundaries in motion analysis, the light intensity
values surrounding two eorresponding points ean be quite
different. When specular reflection and assorted sourees
of noise are also considered, it beeomes elear that the
similarity measure should be ehosen quite earefully.

Two classes of similarity measures have been inves-
tigated in the literature. The first consists of traditional
statistical measures such as correlation and mean square
error (e.g. [Gennery 77}, [Moravec 77]). While algorithms
based on these measures have seen some sueeess, their
performanee has been rather disappointing as a whole.
Exeept under controlled conditions, the intensity profiles
of corresponding points are nisually not eorrelated enough
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It does this by simply dividing normalized run extent by
event count, “Thus, given a rua of events, the extended
niethod divides it into two sections, each with an image
extent and an event count, and solves the modified
equation:

I(I-pa-qy)/L=r(1-pd-qy)/R, where ] and r are event
counts

Note that the run can be split in many places, and
that the modified eq[nnl.ion can be solved by an[y' of the
techniques given in the jack-knife method (with L. and R
npl)roprin(o y modified to L/ and R(r, respectively.) The
optimal ways to split the run would have to be analyzed.

Figure 8: Jack-knife methods on a wave-like texture.

The jack-knife method is based on a measure of
extent-per-texel; this reciprocal method uses texels-per-
extent.  The reci|])rocal method las many advantages.
The two sections that count events can be of fixed image
size and location. Within ecach section, event counts can
be recovered by sinple pattern recognition techniques.
The final computation is simple. In effect, the shape
constraints under this method come from simple feature
detectors.

3.5 Examples and Comment

The true beauty of the jack-knife methods comes
from the fact that they are one-step and robust.

At least two otlier methods for determining surface
orientation rely on an implieit searchiu% for image
“‘regularity’’; having found it they postulate the vamshm%
line to be parallel to it. The remaining surface constrain
is determined by different means [Bajesy 76; Stevens 79).
Ilere, the two stegs are integrated; “tilt” need not be
found before “‘slant”, since any two vanishing points will

do.

The jack-knife methods succeed even with difficult
textures or orientations. As in the wave texture of Figure
6, sometimes the vanishing line direction has no
measurable regularity; regularity-based tilt-searches must
fail.  The jack-knife methods will return a proper
vanishi..g point, however, as long as thei[ are not aligned
with the vanishing line. The jack-knife methods even
work without search on frontal ((p,q)=(0,0)) textures, in
which_every direction exhibits imn%'le textural regularity.
In this case, the jack-knife methods propeily return
infinite vanishing pomts.
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for these algorithms o work rcliably on very many points
in an image. Difficulties with this elwss of similarity
measures have led a number of researchers to examine
a second class of similarity measure, those based on edge
finding (c.g. [Marr and Poggio 79], [Grimson 81] [Baker
and Binford 81]). These measures assert that two points
are similar if and only i they both lic on edges of
approximately the same orientation. More encouraging
results have been obtained with these mcthods, but im-
portant problems remain. Perhaps chicl among these is
the problem of occlusion. Physical points visible in only
one of the images tend to get matched spuriously by edge
based atgorithms. Chance matches for these points can
frequently be found and are difficult to prune. Sinee such
points occur principally at object boundaries, they are ar-
gnably the most important points to deal with effectively.

This paper will describe a third kind of similarity
measure for the correspondence problem. Based on
the idea of combining independent measurements, the
measure has remarkable noise immunity and works reli-
ably at occluding contours, No single image measurement
in this approach is trusted to indicate very much about the
correspondence of a puir of images. Unanimity among the
independent measurements, however, is taken as a power-
ful indication of correspondence. Becausc information
from a large number of measurcments is combined, the
approach is far more robust in a number of important
ways, than approaches which rely heavily on a very small
number of measurements. As a consequence, the solution
1o be presented here can be expected to work quite well
in a wide variety of viewing conditions.

2. Similarity Measurement

Let I)(z, y) and Iy(z, y) be the light intensity functions
for two images whose correspondence is to be computed
and let D(z,y) be the true offset or disparity between
the images measured relative to the coordinate system of
Ii{z,y) and defined on some sct of points D C ®?* for
which corresponding physical points are visible in both
images. Then for all p € D, I1i(p) and Iy(p + D(p)) are
projections of the same physical point. The problem is to
recover D from I; and /.

Measuring similarity can be thought of as a two step
process. The first step is to create a representation of
the local intensity variation at every point in each of the
two images. The second step is to compare the local
representations and determine how close they are to each
other. In the general case, the representation consists of a
eollection fi(p,I), 1 < i < nof different image funetionals
(filters). For edge-based approaches, the functionals would
measure the presence or absence of different classes of

edges, and for corrclation approaches they would measure
weighted local image intensitics,
In order to make use of the full power of statistical
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combination, we need the functionals to be hoth numerous
and ucarly independent.  Typical sets of edge based
functionals are insufficient in number, and correlation
bused functionals are not independent, so neither set is
appropriate for rchiable statistico! inference. The typieal
edge-buzed functinnals coutd be supplemented by others,
but that will not be investigated here. Instead, the simplest
interesting class of functionals — linear ones — will be
considered.  One reasonable sct of ncarly independent
lincar fiinctionals will be presented in section 5. For the
moment, assume such a set exists.

Each functional in the loeal intensity representation
implicitly defines a similarity measure for correspondence
since we expect that fi(p, 1) =~ fi(p + D(p), I2) provided
the f; arce chosen carefully. If we combine the functionals
into a vector at each point: F(p,I) = (fi(p, 1), fa(p, I),
.-y fa(p, I)) then we can expect the vector F(py,I;) —
F(py, I3) to be very small in each component if p; and
pz correspond. On the other hand, if p; and p; do not
correspond, it is likely that F(py, 1) — F'(pz, I2) has at Icast
one large component.

The above intuition can be translated into an algo-
rithm as follows. Define matchp,{p1,p2) be a predicate
which is true if and only if

[filpr, 1) — filpa, I2)| < kio(fi(p, 1))

where o(z) denotes the square root of the expected value
of z2 and let matchp(p1,p2) be a predicate which is true
if and only if for all i € {1,2,...,n},matchp;(p1, p3).
Then matchp is true of a pair of points p; and py if
each component of F(py, I;) — F(pz, I2) is smaller than
its globally determined threshold. It will be argued that
matchp docs a good job of solving the correspondence
problem if the f, and the k; are chosen appropriately—it
is almost always true of corresponding points and almost
never true of non-corresponding points.

3. Expected Error Rates

In order to evaluate matchp, suppose the f; are
orthogonal linear shift invariant functionals and consider
the following stationary image model. Let I; be statior ary
Gaussian white noise and let I, be derived from I
by shifting it according to D(p) and adding Gaussian
white correspondence noise, N(p). The eflicacy with
which D(z,y) can be determined from the f, under these
conditions depends upon how well the f; are preserved
between views, Let

SNI, = o(fi(p, 1))/ o(fi(p, N))

be the signal-to-correspondence-noise ratio of the ith fune-
tional. If SNI?; is greater than two for a dozen function-
als, then matchp will very reliably determiine whether or
not two points correspond,
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Three performance criteria will be considered for
matchp. The first is the rate of false positives—the prob-
ability that matchp will be true of two non-corresponding
points. The sccond criterion is the rate of false negatives-
the probubility that matchp will be false of two cor-
responding points. The third criterion is one of resolution
and concerns the extent to which corresponding points
can be spatially localized.

The calculation of the false negative rate is relatively
straightforward. Let p; be a randomly selected point in
D. The difference between the ith functional evaluated at
p1 and the same functional evaluated at the corresponding
point C(p1) is equal to the valie of the functional applied
to the correspendence noise. A false negative occurs when
that difference exceeds the threshold. The distribution of
fi(p, N} is normal since it is a convolution with a Gaussian
process. The probability that it exceeds the threshold is
the false negative rate for matchp, and is given by

Pr[~ matchpi(p1,C(p1))] = 1 — erf (?kiSNR;).

A false ncgative occurs for matchp when a false
negative occurs for any of the matchp; predicates. Since
the functionals are independent, the false negative rate for
matchp is

Pr[~ matchp(p1, C(p1))] = 1 — H erf(ik SNR,)

=1

The false positive rate is also easy to calculate. Let

p1 and pp be two randomly selected non-corresponding

points. The difference between fi(py, I)) and f,(py, L2)
is a normallydistributed random variable with standard
deviation

o(filpr, 1) — filpa, ) = Vo (fu(p, 1) + o(filp, I2))
~ V2o(f(p, 1))

where the approximation is based on the assumption
that a(fi(p, 1)) = o(fi(p,[2)). Thus the probability of
a false positive based on the ith functional is just the
probability that a normal random variable with the above
standard deviation has magnitude below the threshold.
That probability is given by

Pr[matchm(Pl; p2)] = erf (%).

A false positive for matchp occurs only when a false
positive occurs for each of the matchp; predicates. Henee
the probability of a false positive is just
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n 3
Prmatchp(py,pg)] =~ [ erf (Ile)

i=1

due to the independence of the functionals.

Suppose SNR; = 2 for all 1 and n = 12. Then the
choice of k; represents a tradeoff between a very low false
positive rate and a very low false negative rate. False
positives often result in the generation of wrong disparity
values so they tend to be quite serious. False negatives,
on the other hand, usually result simply in not being able
to determine the disparity at a particular point. Thus a
reasonable choice of k, is one which produces a negligable
false positive rate while still keeping the false negative rate
to a low level. One such choice is k; = 1.2. The resulting
false positive rate is .2 per cent and the resulting false
negative rate is 18 per cent, Both rates are a good deal
lower than what is needed to rehably determine 1mage
correspondence. 1f ‘the signal to correspondence noise
ratio is improved to three, the false positive rate ean be
improved an order of magnitude without worsening the
false negative rate,

4. Expected Resolution

The third criterion of performance for matchp is that
of resolution. If py is picked at random and py == C(py) +
r then if 7is small enough, Pr[matchp(py,ps)] will be
quite large. The separation = at whieh Pr[matchp(p1, ps)]
becomes small will determine the resolution with which
disparity can be recovered using matchp. lLet A; be the
autocorrelation function for fi(p, I) on I, defined as

filp, o) * filp, I2)
o(fi(p, 7))

where the asterisk denotes convolution. Then f;(C(p1), I2)

and f,(C(p1)=+r, I1) have a joint normal distribution with
correlation A,(r). The density of the distribution is

A,,'(I, y) =

%(det 5y~ 12— XTETX ]2
™

where X is the veetor (f,'(C(pl),Iz), f,'(C(pl) +r, 12)), xXe
is X transpose and L is the covariance matrix:

oX(filp, 12)) (Ail(r) A{I(T))

Consider first the case where the correspondenee noise
is zero. Then we are interested in the probability

vi(r) = Pr{|fi(C(p1), I) —fi(C(p1) 41, 12)| < kio(fi(p, I2))]

that one of the functionals evaluated at two points separated

2.
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by r does not change enough to produce differing values
of matchp, at those points. Integrating the joint normal
density over the area where |f,(C(p1), I2) — f.(C(p1) +
r,1o)| < kio(fi(p, 1)) yields

vi(r) = erf | — ki

2¢/1— Ay(r)

For a functional whose impulse response has finite energy,
A,(r) must asymptotically approach zero as r becomes
large. As a consequence,

k,
s =)

This should come as no surprise since the Ielt side is the
probability that two points separated by » differ in the ith
functional by morc than the threshold which should be
cquial to the false positive rate for matchp, in the limit as
frf — oo,

Now consider the impact of correspondence noise on
the resolution. The probability of matehp,(py, C(p1) +7)
being trie is equal to the probability that f,(C(p1) 4+, I2)
falls in the interval B = (fi(py, 1) — mi, fi(p1, ) + mi)
where m; = k,o(f.(p1, 1)) is the threshold for matchp;.
Suppose matchp,(pr, C(p1)) is true.  Then f;(C(p1, [2))
15 by definition contained in the interval 2. Since B
has length 2m,, it must be contained in the interval
Cli= [f,(C(pl),Ig) — 2m,-,f,-(C(p1), 12) -4 27’(1.,']. Thus the
probability-that matchp,(p1, C(p1) + 7 is true is less than
the probability that f;(C(p1) + r, I2) falls in the interval
C, a probability that can be calculated as before to be

k.
PHC) + 7 1) € O] = el | —Z=— |
A(C(p1) + 7 1) ) =

Hence, in the presence of correspondence noise, the
resolution of matchp; with k; = k for points which it
correctly matches cen be no worse than the resolution of
matchp, in the absence of noise with k; = 2k. Let ](r)
be the probability that matchp(p;, C(p1)+7) is true given
that matchp(p1, C(p1)) is true. Then

. ks
v;(r) > erf =

V1—A(r)

If any of the matchp; can resolve the disparity to
within 7, then matchp will also be able to do so. A
conservative estimate of its resolution is expressed by the
relation

Pr[matchp(py, C(p1) + r)|matchp(p1, C(p1))] =

% = k;
v (r) > |] erf| ———=
=1 2¢/1 - A (r)

Functionals whose autocorrelation function lall off slowly
with distance from the origin will not affect the resolution
very ninch since their contribution to the above probability
will be multiplication by a factor near one in the arca of
interest. On the other hand, a functional with a sharply
peaked autocorrclation function will strongly alfect the
resolution,

One useful measnre of resolution is the distance 7
at which the probability of discrimination drops to lifty
per cent. A very conservative cstimate of r; can be
produced by looking only at the functional with the most
strongly peaked autocorrelation function and using the
conservative cstimate developed above for the resolution
of a single functional in the presence of correspondence
noise. Suppose

e — - |
Vi—Ap)
Then
ky
1 — Ar)

o~

2
..

Using a second order Taylor expansion for A;(r), we

obtain "
3 32A,,' Bl
Ts < r = ak‘(_arz )

0

Thus the separation at which fifty per cent discrimination
occurs using matchp; is approximately proportional to the
threshold k; and inversely proportional to the square root
of the curvature of the autocorrelation of the zth functional
at zero. The resolution of matchp can be expected to be a
good deal better than the best resolution of the matchp;.

5. Choice of Measurements

In deriving the propertics of matchp which allow it to
be used to solve the correspondence problem, the existence
of a set of a set of independent, lincar shift invariant
functionals whose values are loosely preserved between
views wus assumed. One such set will be presented here,
If py is a point in D and p; is its corresponding point then
the functions Iy(p; + r) and Ip(C(p;)+ r) can be expected
to be quite similar for small values of r. One complete
characterization of the local behavior of a function of
two dimensions is its two dimensional Taylor series, so
it is natural to examine derivatives of I;(p; 4 r) and
I(C(p1)-+7). Asone might expect, first and sccond partial
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derivatives appear cmipirically to be fairly well preserved
between views. Differentiation ends to secentuate noise,
however, so it is usually a good idea to do some low pass
filtering before taking any sort of derivative, Marr and
Hildreth [1980] argue thut the best low pass filter to use
for applications such as this is a flter with a Gaussian
impulse response because it minimizes the product of
localization in space and frequency. Ience a reasonable
set of functionals to look at is the set of derivatives of
Gaussian smoothed images.

Not all derivatives of Gaussian smoothed images are
independent. In fact, the nth and n 4 2nd derivatives of
Gaussian smoothed white noise are very strongly corre-
lated. These corrclations can be caleulated fairly dircctly.

The Gaussian mask normalized o have unit integral
is

2 2 2
= e (= 4v) 20
2ro

fu(zy y) =
For notational convenicnce, define
ar om

famal(z,y) = Py ‘a‘y,,;fa(z; y)

The desired correlation is

COTT(fn. My ,01 ) fnz,mz,az)

-[ f fn.,m.,al fﬂ:,mz,az dzdy

\/(.[ff?,,,m,,g,dzdy)(fffgu,mhazdzdy)

where the integration goes from negative infinity to posi-
tive infinity.

Straightforward calculations [Kass 82] show that the
magnitude of the correlation is just

COTT(f,“ MO TS fﬂ2,m2,02) =T

( 20109 )m+"+2 n!m! nylmyInglms!

03 4o} (n/2)i(m/2)!\ (2n,)(2my))(2n,)!(2mn,)!
The following wble gives the correlations for the case
where my = my = 0 and o) = 0. Note the high
correlation between fr 5, and S’

[ 1 Tofjoz] 9 1[0+ 8% 1/057] 9% foa

f 1. 0. -8 0] 29

T 7 720 N O O T I 0,
| 0fyjoz® [ S8 [ 0| L |0 [ g5
8f )0z} 0. | -77 0. L. 0, |
o'f/ezt | 29 0. -8 0 L |
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The high correlations in the above table suggest that most
of the usable information in the local behavior of an image
at a point p is contained in a maximal set of independent
terms of the Taylor serics around p. There is a high
correlation between fn, 1m0, and frima,o, When ny = ny
(mod 2) and m; = my (mod 2). llence no independent
set of Taylor series terms for images can have more than
four clements, one for cach possible combination of n
(mod 2) and m (nod 2) where # and m are the number of
derivatives taken in the z and y directions. One maximal
set of independent functionals is given by the following
set of derivatives of Guassian smoothed white noise,

- _[of of & o'
fo= {5z’ 3y’ 32 Byt

A larger set of approximately independent functionals
can be constructed by considering different amounts of
Gaussian smoothing. If the ratio between the standard
deviations of the two Gaussians is s — oy/o2 then cffect
of the size of the Gaussians on their correlation can be
expressed by the relation

COTT(f,,l my,o0 fﬂz,m;,az)
2s m-+tn4-2
=k ;2—11) Corr(f"l.mhau f"r,ml.al)
The maximum correlation hetween two functionals in
7o, U %, is thercfore (2s/(s? + 1))* which occurs between
first order terms. If s = 2, the correlation is .41 but if s —
2.5, it drops to .23 and if s = 3, it falls to .13. The impact

of these siall, non-zero corrzlations on the performance of
matchp cun safely be ignored If the number of different
Gaussians is increased to three, the largest correlation does
not increase. Thus 7* = %, U %, U 7,50 defines a a set of
twelve functionals in which the largest pairwise correlation
is still (2s/(s* 4 1)), 1f s is at least 2.5, then the twelve
functionals in 7* will have sufficiently 'ow correlations to
be regarded as approximately independent.  Since they
are all lincar and shift-invariant, they will satisfy all the
conditions on the f; used in deriving the performance of
matchp.

A conscrvative estimate of the probability that a par-
ticular functional will be unable to resolve the disparity of
a point (o better than an uncertainty of r was previously
calculated in terms of the most sharply peaked autocor-
relation. The autocorrelation function of frme 1S just

Jrme * famo = f2n,2m,\/§a

so the probability that the functional with impulse response
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fu.me will be unable to localize the disparity of a pair of
images to within a range smaller than r is no larger than

ki
\,/I =~ f?n,2m,\/§a(r)
The best resolution along the z-axis for functionals in 7

occurs with the functional that has an impulse rcsponse
equal to fag. Its autocorrelation function is

vy (r) = erf

fo00 * fa0.0 = fo 4 3,

- 14 = 481204 + 4802 e_(12+y2)/402
647010

The probability that none of the functionals will be able
to resolve the disparity to within 7 is the product of the
v, and measurcs the resolution of matchp.

6. Empirical Performance

As an initial test, matchp was applied to a pair of
gray level images generated by computer with all the
important characteristics of the image model used here.
Figure 1. Matchp applied to a Julesz random dot stercogram.

Dark points were nmnatched

G i SRR Lol e
b - n = oy
P
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L -NOISE-RA-NDISE ~3~8-TAYLOR res: t min

7~ was used as the set of functionals. The image pair has a
signal-to-correspondence-noise ratio of two and a disparity
ficld which is zero everywhere except in a central square
covering one ninth of the image arca where it is (6,0) in
pixcls. For-each point (z,y) in the left image, matchp(z +
n,y),n € {—8 —7,—6,...,6,7,8} was calculated. If
there was only one n such that matchp(z + n,y) was
true, n was recorded as the disparity value. If there was
more than one n such that matchp(z + n,y) was true,
the disparity was rccorded as ambiguous. 1f there was 110
n such that matchp(z 4 n,y) was true, the disparity was
recorded as unknown,
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Figure onc shows the results of applying matchp to
the above pair of images. The dark points indicate areas
where the algorithm was unablc to find matches. Slightly
over 93 percent of the pixels in each image were uniquely
matched. The mean squarc error in the disparity values
gencrated was a small fraction of a pixel despite the large
amount of correspondence noise.

It is worth noting that matchp failed to match most of
the points along the border of the shifted ccntral square.,
Some of the points were occluded inn the second image, so
it was correct not to match them, but most of the points
went unmatched because the steep disparity gradient on
the border substantially decreascd the signal-to-noise ratio.
Correlation and cdge-based algorithms tend to generate
significant numbers of incorrect disparity values at oc-
cluded regions and at places where the disparity gradient
is large, but the algorithm based on matchp avoids doing
so because of matchp's unusually low false positive rate.

Matchp has been applied to a small number of

natural images as well. Figure 3 shows the results of
interpolating a surface through disparity valucs gencrated
by matchp for the stereo pair in figurc 2. Intensity is
proportional to depth.  The photos arc of the campus
of the University of British Colunibia and were obtained
from the B.C. Ministry ol Forests.

The combination of independent results has long been
a favoritc method of statisticians.  Maichp represents
an attempt tc bring the power of this method to bear
on the visual correspondence problem.  Despite using
the simplest method of combination intuginable, matchp
attains a rather high level of performance and so argues

strongly for the applicability of this statistical tool to the
correspondence problem.
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Figure 2. University ol British Colunthia tron the air

Pigure 30 Aa’ohp cutput, Intensity is proportional to depth,
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